Bioinformatics Toolbox™
User's Guide

MATLAB

R2023a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Bioinformatics Toolbox™ User's Guide
© COPYRIGHT 2003-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 2003
June 2004
November 2004
March 2005
May 2005
September 2005
November 2005
March 2006
May 2006
September 2006
March 2007
April 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022
March 2023

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 13SP1+)
Revised for Version 1.1 (Release 14)
Revised for Version 2.0 (Release 14SP1+)
Revised for Version 2.0.1 (Release 14SP2)
Revised for Version 2.1 (Release 14SP2+)
Revised for Version 2.1.1 (Release 14SP3)
Revised for Version 2.2 (Release 14SP3+)
Revised for Version 2.2.1 (Release 2006a)
Revised for Version 2.3 (Release 2006a+)
Revised for Version 2.4 (Release 2006b)
Revised for Version 2.5 (Release 2007a)
Revised for Version 2.6 (Release 2007a+)
Revised for Version 3.0 (Release 2007b)
Revised for Version 3.1 (Release 2008a)
Revised for Version 3.2 (Release 2008b)
Revised for Version 3.3 (Release 2009a)
Revised for Version 3.4 (Release 2009b)
Revised for Version 3.5 (Release 2010a)
Revised for Version 3.6 (Release 2010b)
Revised for Version 3.7 (Release 2011a)
Revised for Version 4.0 (Release 2011b)
Revised for Version 4.1 (Release 2012a)
Revised for Version 4.2 (Release 2012b)
Revised for Version 4.3 (Release 2013a)
Revised for Version 4.3.1 (Release 2013b)
Revised for Version 4.4 (Release 2014a)
Revised for Version 4.5 (Release 2014b)
Revised for Version 4.5.1 (Release 2015a)
Revised for Version 4.5.2 (Release 2015b)
Revised for Version 4.6 (Release 2016a)
Revised for Version 4.7 (Release 2016b)
Revised for Version 4.8 (Release 2017a)
Revised for Version 4.9 (Release 2017b)
Revised for Version 4.10 (Release 2018a)
Revised for Version 4.11 (Release 2018b)
Revised for Version 4.12 (Release 2019a)
Revised for Version 4.13 (Release 2019b)
Revised for Version 4.14 (Release 2020a)
Revised for Version 4.15 (Release 2020b)
Revised for Version 4.15.1 (Release 2021a)
Revised for Version 4.15.2 (Release 2021b)
Revised for Version 4.16 (Release 2022a)
Revised for Version 4.16.1 (Release 2022b)
Revised for Version 4.17 (Release 2023a)

Contents

Getting Started

Bioinformatics Toolbox Product Description 1-2
Key Features e e 1-2
Product OVerview e 1-3
Features ... o e 1-3
Expected USers oo e e 1-4
Data Formats and Databases 1-5
Sequence Alignments 1-7
Sequence Utilities and Statistics 1-8
Protein Property Analysis 1-9
Phylogenetic Analysis 1-10
Microarray Data Analysis Tools 1-11
Microarray Data Storage i 1-12
Mass Spectrometry Data Analysis 1-13
Graph Theory Functions 1-15
Statistical Learning and Visualization 1-16
Prototyping and Development Environment 1-17
Data Visualization 1-18
Exchange Bioinformatics Data Between Excel and MATLAB 1-19
Use Excel and MATLAB Together 1-19
About the Example 1-19
Set System Path and Enable Add-In 1-19
Download Spreadsheet with Filtered YeastData 1-19
Run the Example for the Entire DataSet 1-20
Edit Formulas to Run the Example on a Subset of the Data 1-21

Use the Spreadsheet Link product to Interact With the Data in MATLAB
... 1-22
Working with Whole Genome Data 1-25

vi

Contents

Comparing Whole Genomes,

High-Throughput Sequence Analysis

Work with Next-Generation Sequencing Data

OVETVIBW . . ittt e e e
What Files Can You ACCESS? ittt e e
Before YouBegin
Create a BioIndexedFile Object to Access Your Source File
Determine the Number of Entries Indexed By a BioIndexedFile Object . . .
Retrieve Entries from Your Source File
Read Entries from Your Source File

Manage Sequence Read Datain Objects

OVEIVIEW . . . o
Represent Sequence and Quality Data in a BioRead Object
Represent Sequence, Quality, and Alignment/Mapping Data in a BioMap
Object .« .o
Retrieve Information from a BioRead or BioMap Object
Set Information in a BioRead or BioMap Object
Determine Coverage of a Reference Sequence
Construct Sequence Alignments to a Reference Sequence
Filter Read Sequences Using SAMFlags

Store and Manage Feature Annotations in Objects

Represent Feature Annotations in a GFFAnnotation or GTFAnnotation
Object ..o
Construct an Annotation Object
Retrieve General Information from an Annotation Object
Access Data in an Annotation Object
Use Feature Annotations with Sequence Read Data

Bioinformatics Toolbox Software Support Packages

Install Support Package i
Available Support Packages

Count Features from NGSReads
Identifying Differentially Expressed Genes from RNA-Seq Data

Visualize NGS Data Using Genomics Viewer App

Openthe ApD ... oo e
Add Tracks by ImportingData
Visualize Single Nucleotide Variation in Cytochrome P450

Exploring Genome-Wide Differences in DNA Methylation Profiles

Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

NNNNNMNNNDN

BAWOONNN

2-79

2-97

Bioinformatics Pipeline SplitDimension 2-107
Specify SplitDimension to Select Which Input Array Dimensions to Split

.. 2-107

Provide Compatible Array sizes, 2-107
Split Input SAM files and Assemble Transcriptomes Using Bioinformatics

Pipeline 2-109

Bioinformatics Pipeline RunMode 2-111

Create Simple Pipeline to Plot Sequence Quality Data Using Biopipeline
Desigmner e 2-112

Count RNA-Seq Reads Using Biopipeline Designer 2-122

Sequence Analysis

3|

Exploring a Nucleotide Sequence Using Command Line 3-2
Overview of Example e 3-2
Searching the Web for Sequence Information 3-2
Reading Sequence Information fromthe Web 34
Determining Nucleotide Composition 3-5
Determining Codon Composition, 3-8
Open Reading Framest 3-11
Amino Acid Conversion and Composition 3-13

Exploring a Nucleotide Sequence Using the Sequence Viewer App 3-15
Overview of the Sequence Viewer, 3-15
Importing a Sequence into the Sequence Viewer 3-15
Viewing Nucleotide Sequence Information 3-17
Searching for Words i 3-19
Exploring Open Reading Frames 3-22
Closing the Sequence Viewerc .. 3-25

Explore a Protein Sequence Using the Sequence Viewer App 3-26
Overview of the Sequence Viewer 3-26
Viewing Amino Acid Sequence Statistics 3-26
Closing the Sequence Viewer i, 3-28
References 3-29

Compare Sequences Using Sequence Alignment Algorithms 3-30

View and Align Multiple Sequences 3-41
Overview of the Sequence AlignmentApp 3-41
Visualize Multiple Sequence Alignment 3-41
Adjust Sequence Alignments Manually 3-42
Rearrange ROWS i 3-50
Generate Phylogenetic Tree from Aligned Sequences 3-52

Analyzing Synonymous and Nonsynonymous Substitution Rates 3-55

viii

Contents

Investigating the Bird Flu Virus
Exploring Primer Design
Identifying Over-Represented Regulatory Motifs

Predicting and Visualizing the Secondary Structure of RNA Sequences

Using HMMs for Profile Analysis of a Protein Family
Predicting Protein Secondary Structure Using a Neural Network
Visualizing the Three-Dimensional Structure of a Molecule
Calculating and Visualizing Sequence Statistics
Aligning Pairs of Sequences
Assessing the Significance of an Alignment
Using Scoring Matrices to Measure Evolutionary Distance
Calling Bioperl Functions from MATLAB

Accessing NCBI Entrez Databases with E-Utilities

3-108

3-125

3-142

3-159

3-173

3-181

3-190

3-194

4

Managing Gene Expression Data in Objects

Representing Expression Data Values in DataMatrix Objects
Overview of DataMatrix Objects
Constructing DataMatrix Objects
Getting and Setting Properties of a DataMatrix Object
Accessing Data in DataMatrix Objects

Representing Expression Data Values in ExptData Objects
Overview of ExptData Objects i,
Constructing ExptData Objects
Using Properties of an ExptData Object
Using Methods of an ExptData Object
References

Representing Sample and Feature Metadata in MetaData Objects
Overview of MetaData Objects
Constructing MetaData Objects
Using Properties of a MetaData Object
Using Methods of a MetaData Object

Representing Experiment Information in a MIAME Object 4-16

Overview of MIAME Objects 4-16
Constructing MIAME Objectst 4-16
Using Properties of a MIAME Object 4-17
Using Methods of a MIAME Object 4-18
Representing All Data in an ExpressionSet Object 4-19
Overview of ExpressionSet Objects 4-19
Constructing ExpressionSet Objects 4-20
Using Properties of an ExpressionSet Object 4-21
Using Methods of an ExpressionSet Object 4-21
Analyzing Illumina Bead Summary Gene Expression Data 4-23
Detecting DNA Copy Number Alteration in Array-Based CGH Data 4-44
Analyzing Array-Based CGH Data Using Bayesian Hidden Markov
Modeling 4-60
Visualizing MicroarrayData 4-74
Gene Expression Profile Analysis 4-95
Working with AffymetrixData 4-112
Preprocessing Affymetrix Microarray Data at the Probe Level 4-130
Analyzing Affymetrix SNP Arrays for DNA Copy Number Variants 4-141
Working with GEO SeriesData 4-161
Identifying Biomolecular Subgroups Using Attractor Metagenes 4-172
Working with the Clustergram Function 4-184
Working with Objects for Microarray Experiment Data 4-202

Phylogenetic Analysis

S|

Using the Phylogenetic Tree App 5-2
Overview of the Phylogenetic Tree App oo v, 5-2
Opening the Phylogenetic Tree App oo i 5-2
File Menuo 5-3
Tools Menu 5-11
Window Menu 5-17
HelpMenu e e 5-18

Building a Phylogenetic Tree for the Hominidae Species 5-19

Analyzing the Origin of the Human Immunodeficiency Virus 5-25

ix

X

Contents

Bootstrapping Phylogenetic Trees 5-32

Mass Spectrometry and Bioanalytics

6|

Preprocessing Raw Mass SpectrometryData 6-2

Visualizing and Preprocessing Hyphenated Mass Spectrometry Data Sets

for Metabolite and Protein/Peptide Profiling 6-19
Identifying Significant Features and Classifying Protein Profiles 6-38
Differential Analysis of Complex Protein and Metabolite Mixtures using

Liquid Chromatography/Mass Spectrometry (LC/MS) 6-52
Genetic Algorithm Search for Features in Mass Spectrometry Data . . . 6-71

Batch Processing of Spectra Using Sequential and Parallel Computing
... 6-77

Getting Started

» “Bioinformatics Toolbox Product Description” on page 1-2
* “Product Overview” on page 1-3

* “Data Formats and Databases” on page 1-5

* “Sequence Alignments” on page 1-7

* “Sequence Utilities and Statistics” on page 1-8

* “Protein Property Analysis” on page 1-9

* “Phylogenetic Analysis” on page 1-10

* “Microarray Data Analysis Tools” on page 1-11

* “Microarray Data Storage” on page 1-12

* “Mass Spectrometry Data Analysis” on page 1-13

* “Graph Theory Functions” on page 1-15

» “Statistical Learning and Visualization” on page 1-16

* “Prototyping and Development Environment” on page 1-17
* “Data Visualization” on page 1-18

* “Exchange Bioinformatics Data Between Excel and MATLAB” on page 1-19
* “Working with Whole Genome Data” on page 1-25

* “Comparing Whole Genomes” on page 1-32

1 Getting Started

Bioinformatics Toolbox Product Description

1-2

Read, analyze, and visualize genomic and proteomic data

Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing (NGS),
microarray analysis, mass spectrometry, and gene ontology. Using toolbox functions, you can read
genomic and proteomic data from standard file formats such as SAM, FASTA, CEL, and CDF, as well
as from online databases such as the NCBI Gene Expression Omnibus and GenBank®. You can explore
and visualize this data with sequence browsers, spatial heatmaps, and clustergrams. The toolbox also
provides statistical techniques for detecting peaks, imputing values for missing data, and selecting
features.

You can combine toolbox functions to support common bioinformatics workflows. You can use ChIP-
Seq data to identify transcription factors; analyze RNA-Seq data to identify differentially expressed
genes; identify copy number variants and SNPs in microarray data; and classify protein profiles using
mass spectrometry data.

Key Features

* Next Generation Sequencing analysis and browser

* Sequence analysis and visualization, including pairwise and multiple sequence alignment and
peak detection

» Microarray data analysis, including reading, filtering, normalizing, and visualization

* Mass spectrometry analysis, including preprocessing, classification, and marker identification
* Phylogenetic tree analysis

* Graph theory functions, including interaction maps, hierarchy plots, and pathways

» Data import from genomic, proteomic, and gene expression files, including SAM, FASTA, CEL, and
CDF and from databases such as NCBI and GenBank

Product Overview

Product Overview

Features

The Bioinformatics Toolbox product extends the MATLAB® environment to provide an integrated
software environment for genome and proteome analysis. Scientists and engineers can answer
questions, solve problems, prototype new algorithms, and build applications for drug discovery and
design, genetic engineering, and biological research. An introduction to these features will help you
to develop a conceptual model for working with the toolbox and your biological data.

The Bioinformatics Toolbox product includes many functions to help you with genome and proteome
analysis. Most functions are implemented in the MATLAB programming language, with the source
available for you to view. This open environment lets you explore and customize the existing toolbox
algorithms or develop your own.

You can use the basic bioinformatic functions provided with this toolbox to create more complex
algorithms and applications. These robust and well-tested functions are the functions that you would
otherwise have to create yourself.

Toolbox features and functions fall within these categories:
* Data formats and databases — Connect to Web-accessible databases containing genomic and

proteomic data. Read and convert between multiple data formats.

* High-throughput sequencing — Gene expression and transcription factor analysis of next-
generation sequencing data, including RNA-Seq and ChIP-Seq.

* Sequence analysis — Determine the statistical characteristics of a sequence, align two
sequences, and multiply align several sequences. Model patterns in biological sequences using
hidden Markov model (HMM) profiles.

+ Phylogenetic analysis — Create and manipulate phylogenetic tree data.

* Microarray data analysis — Read, normalize, and visualize microarray data.

* Mass spectrometry data analysis — Analyze and enhance raw mass spectrometry data.

* Statistical learning — Classify and identify features in data sets with statistical learning tools.

* Programming interface — Use other bioinformatic software (BioPerl and BigJava) within the
MATLAB environment.

The field of bioinformatics is rapidly growing and will become increasingly important as biology
becomes a more analytical science. The toolbox provides an open environment that you can customize
for development and deployment of the analytical tools you will need.

* Prototype and develop algorithms — Prototype new ideas in an open and extensible
environment. Develop algorithms using efficient string processing and statistical functions, view
the source code for existing functions, and use the code as a template for customizing, improving,
or creating your own functions. See “Prototyping and Development Environment” on page 1-17.

* Visualize data — Visualize sequences and alignments, gene expression data, phylogenetic trees,
mass spectrometry data, protein structure, and relationships between data with interconnected
graphs. See “Data Visualization” on page 1-18.

* Share and deploy applications — Use an interactive GUI builder to develop a custom graphical
front end for your data analysis programs. Create standalone applications that run separately
from the MATLAB environment.

1-3

1 Getting Started

1-4

Expected Users

The Bioinformatics Toolbox product is intended for computational biologists and research scientists
who need to develop new algorithms or implement published ones, visualize results, and create
standalone applications.

* Industry/Professional — Increasingly, drug discovery methods are being supported by
engineering practice. This toolbox supports tool builders who want to create applications for the
biotechnology and pharmaceutical industries.

* Education/Professor/Student — This toolbox is well suited for learning and teaching genome
and proteome analysis techniques. Educators and students can concentrate on bioinformatic
algorithms instead of programming basic functions such as reading and writing to files.

While the toolbox includes many bioinformatic functions, it is not intended to be a complete set of
tools for scientists to analyze their biological data. However, the MATLAB environment is ideal for
rapidly designing and prototyping the tools you need.

Data Formats and Databases

Data Formats and Databases

The Bioinformatics Toolbox lets you access many of the databases on the web and other online data
repositories. It lets you copy data into the MATLAB workspace, and read and write to files with
standard bioinformatic formats. It also reads many common genome file formats so that you do not
have to write and maintain your own file readers.

Web-based databases — You can directly access public databases on the Web and copy sequence
and gene expression information into the MATLAB environment.

The sequence databases currently supported are GenBank (getgenbank), GenPept (getgenpept),
European Molecular Biology Laboratory (EMBL) (getembl), and Protein Data Bank (PDB) (getpdb).
You can also access data from the NCBI Gene Expression Omnibus (GEQO) Web site by using a single
function (getgeodata).

Get multiply aligned sequences (gethmmalignment), hidden Markov model profiles (gethmmprof),
and phylogenetic tree data (gethmmtree) from the PFAM database.

Gene Ontology database — Load the database from the Web into a gene ontology object (geneont).
Select sections of the ontology with methods for the geneont object (getancestors,
getdescendents, getmatrix, getrelatives), and manipulate data with utility functions
(goannotread, num2goid).

Read data from instruments — Read data generated from gene sequencing instruments (scfread,
joinseq, traceplot), mass spectrometers (jcampread), and Agilent® microarray scanners
(agferead).

Reading data formats — The toolbox provides a number of functions for reading data from common
bioinformatic file formats.

* Sequence data: GenBank (genbankread), GenPept (genpeptread), EMBL (emblread), PDB
(pdbread), and FASTA (fastaread)

* Multiply aligned sequences: ClustalW and GCG formats (multialignread)

* Gene expression data from microarrays: Gene Expression Omnibus (GEO) data (geosoftread),
GenePix® data in GPR and GAL files (gprread, galread), SPOT data (sptread), Affymetrix®
GeneChip® data (affyread), and ImaGene® results files (imageneread)

* Hidden Markov model profiles: PFAM-HMM file (pfamhmmread)

Writing data formats — The functions for getting data from the Web include the option to save the
data to a file. However, there is a function to write data to a file using the FASTA format
(fastawrite).

BLAST searches — Request Web-based BLAST searches (blastncbi), get the results from a search
(getblast) and read results from a previously saved BLAST formatted report file (blastread).

The MATLAB environment has built-in support for other industry-standard file formats including
Microsoft® Excel® and comma-separated-value (CSV) files. Additional functions perform ASCII and
low-level binary I/O, allowing you to develop custom functions for working with any data format.

1-5

1 Getting Started

1-6

See Also

More About

“High-Throughput Sequencing”
“Microarray Analysis”

“Sequence Analysis”

“Structural Analysis”

“Mass Spectrometry and Bioanalytics”

Sequence Alignments

Sequence Alignments

You can select from a list of analysis methods to compare nucleotide or amino acid sequences using
pairwise or multiple sequence alignment functions.

Pairwise sequence alignment — Efficient implementations of standard algorithms such as the
Needleman-Wunsch (nwalign) and Smith-Waterman (swalign) algorithms for pairwise sequence
alignment. The toolbox also includes standard scoring matrices such as the PAM and BLOSUM
families of matrices (blosum, dayhoff, gonnet, nuc44, pam). Visualize sequence similarities with
seqdotplot.

Multiple sequence alignment — Functions for multiple sequence alignment (multialign,
profalign) and functions that support multiple sequences (multialignread, fastaread). There
is also a graphical interface (seqalignviewer) for viewing the results of a multiple sequence
alignment and manually making adjustment.

Multiple sequence profiles — Implementations for multiple alignment and profile hidden Markov
model algorithms (gethmmprof, gethmmalignment, gethmmtree, pfamhmmread, hmmprofalign,
hmmprofestimate, hmmprofgenerate, hmmprofmerge, hmmprofstruct, showhmmprof).

Biological codes — Look up the letters or numeric equivalents for commonly used biological codes
(aminolookup, baselookup, geneticcode, revgeneticcode).

See Also

More About

. “Sequence Utilities and Statistics” on page 1-8
. “Sequence Analysis”
. “Data Formats and Databases” on page 1-5

1-7

1 Getting Started

Sequence Utilities and Statistics

You can manipulate and analyze your sequences to gain a deeper understanding of the physical,
chemical, and biological characteristics of your data. Use a graphical user interface (GUI) with many
of the sequence functions in the toolbox (seqviewer).

Sequence conversion and manipulation — The toolbox provides routines for common operations,
such as converting DNA or RNA sequences to amino acid sequences, that are basic to working with
nucleic acid and protein sequences (aa2int, aa2nt, dna2rna, rna2dna, int2aa, int2nt, nt2aa,
nt2int, seqcomplement, seqrcomplement, seqreverse).

You can manipulate your sequence by performing an in silico digestion with restriction endonucleases
(restrict) and proteases (cleave).

Sequence statistics — Determine various statistics about a sequence (aacount, basecount,
codoncount, dimercount, nmercount, ntdensity, codonbias, cpgisland, oligoprop), search
for specific patterns within a sequence (seqwordcount), or search for open reading frames
(segshoworfs). In addition, you can create random sequences for test cases (randseq).

Sequence utilities — Determine a consensus sequence from a set of multiply aligned amino acid,
nucleotide sequences (seqconsensus, or a sequence profile (seqprofile). Format a sequence for
display (seqdisp) or graphically show a sequence alignment with frequency data (seqlogo).

Additional MATLAB functions efficiently handle string operations with regular expressions (regexp,
seq2regexp) to look for specific patterns in a sequence and search through a library for string
matches (segmatch).

Look for possible cleavage sites in a DNA/RNA sequence by searching for palindromes

(palindromes).

See Also

More About

. “Sequence Alignments” on page 1-7

. “Sequence Analysis”

. “Protein and Amino Acid Sequence Analysis”
. “Data Formats and Databases” on page 1-5

1-8

Protein Property Analysis

Protein Property Analysis

You can use a collection of protein analysis methods to extract information from your data. You can
determine protein characteristics and simulate enzyme cleavage reactions. The toolbox provides
functions to calculate various properties of a protein sequence, such as the atomic composition
(atomiccomp), molecular weight (molweight), and isoelectric point (isoelectric). You can cleave
a protein with an enzyme (cleave, rebasecuts) and create distance and Ramachandran plots for
PDB data (pdbdistplot, ramachandran). The toolbox contains a graphical user interface for
protein analysis (proteinplot) and plotting 3-D protein and other molecular structures with
information from molecule model files, such as PDB files.

Amino acid sequence utilities — Calculate amino acid statistics for a sequence (aacount) and get
information about character codes (aminolookup).

See Also

More About

. “Protein and Amino Acid Sequence Analysis”
. “Structural Analysis”

1-9

1 Getting Started

Phylogenetic Analysis

1-10

Phylogenetic analysis is the process you use to determine the evolutionary relationships between
organisms. The results of an analysis can be drawn in a hierarchical diagram called a cladogram or
phylogram (phylogenetic tree). The branches in a tree are based on the hypothesized evolutionary
relationships (phylogeny) between organisms. Each member in a branch, also known as a
monophyletic group, is assumed to be descended from a common ancestor. Originally, phylogenetic
trees were created using morphology, but now, determining evolutionary relationships includes
matching patterns in nucleic acid and protein sequences. The Bioinformatics Toolbox provides the
following data structure and functions for phylogenetic analysis.

Phylogenetic tree data — Read and write Newick-formatted tree files (phytreeread,
phytreewrite) into the MATLAB Workspace as phylogenetic tree objects (phytree).

Create a phylogenetic tree — Calculate the pairwise distance between biological sequences
(segpdist), estimate the substitution rates (dnds, dndsml), build a phylogenetic tree from pairwise
distances (seqlinkage, seqneighjoin, reroot), and view the tree in an interactive GUI that
allows you to view, edit, and explore the data (phytreeviewer or view). This GUI also allows you to
prune branches, reorder, rename, and explore distances.

Phylogenetic tree object methods — You can access the functionality of the phytreeviewer user
interface using methods for a phylogenetic tree object (phytree). Get property values (get) and
node names (getbyname). Calculate the patristic distances between pairs of leaf nodes (pdist,
weights) and draw a phylogenetic tree object in a MATLAB Figure window as a phylogram,
cladogram, or radial treeplot (plot). Manipulate tree data by selecting branches and leaves using a
specified criterion (select, subtree) and removing nodes (prune). Compare trees (getcanonical)
and use Newick-formatted strings (getnewickstr).

See Also

More About

. “Sequence Utilities and Statistics” on page 1-8
. “Sequence Analysis”

Microarray Data Analysis Tools

Microarray Data Analysis Tools

The MATLAB environment is widely used for microarray data analysis, including reading, filtering,
normalizing, and visualizing microarray data. However, the standard normalization and visualization
tools that scientists use can be difficult to implement. The toolbox includes these standard functions:

Microarray data — Read Affymetrix GeneChip files (affyread) and plot data (probesetplot),
ImaGene results files (imageneread), SPOT files (sptread) and Agilent microarray scanner files
(agferead). Read GenePix GPR files (gprread) and GAL files (galread). Get Gene Expression

Omnibus (GEO) data from the Web (getgeodata) and read GEO data from files (geosoftread).

A utility function (magetfield) extracts data from one of the microarray reader functions (gprread,
agferead, sptread, imageneread).

Microarray normalization and filtering — The toolbox provides a number of methods for
normalizing microarray data, such as lowess normalization (nalowess) and mean normalization
(manorm), or across multiple arrays (quantilenorm). You can use filtering functions to clean raw
data before analysis (geneentropyfilter, genelowvalfilter, generangefilter,
genevarfilter), and calculate the range and variance of values (exprprofrange, exprprofvar).

Microarray visualization — The toolbox contains routines for visualizing microarray data. These
routines include spatial plots of microarray data (maimage, redgreencmap), box plots (maboxplot),
loglog plots (maloglog), and intensity-ratio plots (mairplot). You can also view clustered expression
profiles (clustergram, redgreencmap). You can create 2-D scatter plots of principal components
from the microarray data (mapcaplot).

Microarray utility functions — Use the following functions to work with Affymetrix GeneChip data
sets. Get library information for a probe (probelibraryinfo), gene information from a probe set
(probesetlookup), and probe set values from CEL and CDF information (probesetvalues). Plot
probe set values (probesetplot).

The toolbox accesses statistical routines to perform cluster analysis and to visualize the results, and
you can view your data through statistical visualizations such as dendrograms, classification, and
regression trees.

See Also

More About

. “Microarray Data Storage” on page 1-12
. “Microarray Analysis”

1-11

1 Getting Started

Microarray Data Storage

1-12

The Bioinformatics Toolbox includes functions, objects, and methods for creating, storing, and
accessing microarray data.

The object constructor function, DataMatrix, lets you create a DataMatrix object to encapsulate
data and metadata from a microarray experiment. A DataMatrix object stores experimental data in a
matrix, with rows typically corresponding to gene names or probe identifiers, and columns typically
corresponding to sample identifiers. A DataMatrix object also stores metadata, including the gene
names or probe identifiers (as the row names) and sample identifiers (as the column names).

You can reference microarray expression values in a DataMatrix object the same way you reference
data in a MATLAB array, that is, by using linear or logical indexing. Alternately, you can reference this
experimental data by gene (probe) identifiers and sample identifiers. Indexing by these identifiers lets
you quickly and conveniently access subsets of the data without having to maintain additional index
arrays.

Many MATLAB operators and arithmetic functions are available to DataMatrix objects by means of
methods. These methods let you modify, combine, compare, analyze, plot, and access information
from DataMatrix objects. Additionally, you can easily extend the functionality by using general
element-wise functions, dmarrayfun and dmbsxfun, and by manually accessing the properties of a
DataMatrix object.

Note For more information on creating and using DataMatrix objects, see “Representing Expression
Data Values in DataMatrix Objects” on page 4-5.

See Also

More About

. “Microarray Data Analysis Tools” on page 1-11
. “Microarray Analysis”

Mass Spectrometry Data Analysis

Mass Spectrometry Data Analysis

The mass spectrometry functions preprocess and classify raw data from SELDI-TOF and MALDI-TOF
spectrometers and use statistical learning functions to identify patterns.

Reading raw data — Load raw mass/charge and ion intensity data from comma-separated-value
(CSV) files, or read a JCAMP-DX-formatted file with mass spectrometry data (j campread) into the
MATLAB environment.

You can also have data in TXT files and use the importdata function.

Preprocessing raw data — Resample high-resolution data to a lower resolution (msresample)
where the extra data points are not needed. Correct the baseline (nsbackadj). Align a spectrum to a
set of reference masses (msalign) and visually verify the alignment (msheatmap). Normalize the
area between spectra for comparing (msnorm), and filter out noise (mslowess and mssgolay).

Spectrum analysis — Load spectra into a GUI (msviewer) for selecting mass peaks and further
analysis.

The following graphic illustrates the roles of the various mass spectrometry functions in the toolbox.

1-13

1 Getting Started

1-14

mzXML File
mzxmlread
mzXML Structure
mzxmlzpea}cs
L J
Peak Lists msdotplot ot
(Centroided Data)
mspeaks msppresample
i b
Raw Reconstructed i : Plot
Data Data
SemicontinuousSignal MSVIeWer | Mass Spectra
Viewer

@

See Also

More About

“Mass Spectrometry and Bioanalytics”

“Data Formats and Databases” on page 1-5

Graph Theory Functions

Graph Theory Functions

Graph theory functions in the Bioinformatics Toolbox apply basic graph theory algorithms to sparse
matrices. A sparse matrix represents a graph, any nonzero entries in the matrix represent the edges
of the graph, and the values of these entries represent the associated weight (cost, distance, length,
or capacity) of the edge. Graph algorithms that use the weight information will cancel the edge if a
NaN or an Inf is found. Graph algorithms that do not use the weight information will consider the
edge if a NaN or an Inf is found, because these algorithms look only at the connectivity described by
the sparse matrix and not at the values stored in the sparse matrix.

Sparse matrices can represent four types of graphs:

* Directed Graph — Sparse matrix, either double real or logical. Row (column) index indicates the
source (target) of the edge. Self-loops (values in the diagonal) are allowed, although most of the
algorithms ignore these values.

* Undirected Graph — Lower triangle of a sparse matrix, either double real or logical. An
algorithm expecting an undirected graph ignores values stored in the upper triangle of the sparse
matrix and values in the diagonal.

* Direct Acyclic Graph (DAG) — Sparse matrix, double real or logical, with zero values in the
diagonal. While a zero-valued diagonal is a requirement of a DAG, it does not guarantee a DAG. An
algorithm expecting a DAG will not test for cycles because this will add unwanted complexity.

* Spanning Tree — Undirected graph with no cycles and with one connected component.

There are no attributes attached to the graphs; sparse matrices representing all four types of graphs
can be passed to any graph algorithm. All functions will return an error on nonsquare sparse
matrices.

Graph algorithms do not pretest for graph properties because such tests can introduce a time penalty.
For example, there is an efficient shortest path algorithm for DAG, however testing if a graph is
acyclic is expensive compared to the algorithm. Therefore, it is important to select a graph theory
function and properties appropriate for the type of the graph represented by your input matrix. If the
algorithm receives a graph type that differs from what it expects, it will either:

* Return an error when it reaches an inconsistency. For example, if you pass a cyclic graph to the
graphshortestpath function and specify Acyclic as the method property.

* Produce an invalid result. For example, if you pass a directed graph to a function with an
algorithm that expects an undirected graph, it will ignore values in the upper triangle of the
sparse matrix.

See Also
graphallshortestpaths | graphconncomp | graphshortestpath | graphisdag

1-15

1 Getting Started

Statistical Learning and Visualization

You can classify and identify features in data sets, set up cross-validation experiments, and compare
different classification methods.

The toolbox provides functions that build on the classification and statistical learning tools in the
Statistics and Machine Learning Toolbox™ software (classify, kmeans, fitctree, and
fitrtree).

These functions include imputation tools (knnimpute), and K-nearest neighbor classifiers (fitcknn).

Other functions include set up of cross-validation experiments (crossvalind) and comparison of the
performance of different classification methods (classperf). In addition, there are tools for
selecting diversity and discriminating features (rankfeatures, randfeatures).

1-16

Prototyping and Development Environment

Prototyping and Development Environment

The MATLAB environment lets you prototype and develop algorithms and easily compare alternatives.

Integrated environment — Explore biological data in an environment that integrates
programming and visualization. Create reports and plots with the built-in functions for
mathematics, graphics, and statistics.

Open environment — Access the source code for the toolbox functions. The toolbox includes
many of the basic bioinformatics functions you will need to use, and it includes prototypes for
some of the more advanced functions. Modify these functions to create your own custom solutions.

Interactive programming language — Test your ideas by typing functions that are interpreted
interactively with a language whose basic data element is an array. The arrays do not require
dimensioning and allow you to solve many technical computing problems,

Using matrices for sequences or groups of sequences allows you to work efficiently and not worry
about writing loops or other programming controls.

Programming tools — Use a visual debugger for algorithm development and refinement and an
algorithm performance profiler to accelerate development.

1-17

1 Getting Started

Data Visualization

You can visually compare pairwise sequence alignments, multiply aligned sequences, gene expression
data from microarrays, and plot nucleic acid and protein characteristics. The 2-D and volume
visualization features let you create custom graphical representations of multidimensional data sets.
You can also create montages and overlays, and export finished graphics to an Adobe® PostScript®
image file or copy directly into Microsoft PowerPoint®.

1-18

Exchange Bioinformatics Data Between Excel and MATLAB

Exchange Bioinformatics Data Between Excel and MATLAB

In this section...

“Use Excel and MATLAB Together” on page 1-19

“About the Example” on page 1-19

“Set System Path and Enable Add-In” on page 1-19

“Download Spreadsheet with Filtered Yeast Data” on page 1-19

“Run the Example for the Entire Data Set” on page 1-20

“Edit Formulas to Run the Example on a Subset of the Data” on page 1-21

“Use the Spreadsheet Link product to Interact With the Data in MATLAB” on page 1-22

Use Excel and MATLAB Together

If you have bioinformatics data in an Excel (2007 or newer) spreadsheet, use Spreadsheet Link to:

* Connect Excel with the MATLAB Workspace to exchange data
* Use MATLAB and Bioinformatics Toolbox computational and visualization functions

About the Example

Note The following example assumes you have Spreadsheet Link software installed on your system.

The Excel file used in the following example contains data from DeRisi, J.L., Iyer, V.R., and Brown, P.O.
(Oct. 24, 1997). Exploring the metabolic and genetic control of gene expression on a genomic scale.
Science 278(5338), 680-686. PMID: 9381177. The data was filtered using the steps described in
“Gene Expression Profile Analysis” on page 4-95.

Set System Path and Enable Add-In

1 If not already done, modify your system path to include the MATLAB root folder as described in
the Spreadsheet Link documentation.

2 Ifnot already done, enable the Spreadsheet Link Add-In as described in “Add-In Setup”
(Spreadsheet Link).

3 Close MATLAB and Excel if they are open.
Start Excel. MATLAB and Spreadsheet Link software automatically start.

Download Spreadsheet with Filtered Yeast Data

1 Download the provided Filtered Yeastdata.xlsm and open it in Excel.

2 In the Excel software, enable macros. Click the Developer tab, and then select Macro Security
from the Code group. If the Developer tab is not displayed on the Excel ribbon, consult Excel
Help to display it. If you encounter the "Can't find project or library" error, you might need to
update the references in the Visual Basic software. Open Visual Basic by clicking the Developer

1-19

1 Getting Started

tab and selecting Visual Basic. Then select Tools > References > SpreadsheetLink. If the
MISSING: exclink2007.xlam check box is selected, clear it.

Run the Example for the Entire Data Set

1

In the provided Excel file, note that columns A through H contain data from DeRisi et al. Also
note that cells J5, J6, J7, and J12 contain formulas using Spreadsheet Link functions
MLPutMatrix and MLEvalString.

Tip To view a cell's formula, select the cell, and then view the formula in the formula bar

A atthe top of the Excel window.

Execute the formulas in cells J5, J6, J7, and J12, by selecting the cell, pressing F2, and then
pressing Enter.

Each of the first three cells contains a formula using the Spreadsheet Link function
MLPutMatrix, which creates a MATLAB variable from the data in the spreadsheet. Cell J12
contains a formula using the Spreadsheet Link function MLEvalString, which runs the
Bioinformatics Toolbox clustergram function using the three variables as input. For more
information on adding formulas using Spreadsheet Link functions, see “Create Diagonal Matrix
Using Worksheet Cells” (Spreadsheet Link).

Cells 15, 16, 17 contain formulas that
use the MLPutMatrix function to
create three MATLAB variables.

Push the data into|3 MATLAB variables

Y

o

[

Cell J12 contains a formula that uses
the MLEvalStringfunctionto
run the clustergramfunction.

<== MLPutMatrix("data” B4:HE17)
<== MLPutMatrix("Genes” A4-AB1T)
<== MLPutMatrix("TimeSteps” B3:H3)

Run the clustergram command on the data using the 3 variables

—l-| U|-=== MLEvalString(“clustergram(data, RowlLabels’, Genes,'ColumnLabels’ TimeSteps)"”)

Run the macro function Clustergram on the data using cell ranges

| 0 |<== Clustergram(B4:H617 A4:A617,B3:H3)

Cell J17 contains a formula that uses
amacro function, Clustergram,
created in Visual Basic Editor.

1-20

Exchange Bioinformatics Data Between Excel and MATLAB

3 Note that cell J17 contains a formula using a macro function Clustergram, which was created in
the Visual Basic® Editor. Running this macro does the same as the formulas in cells J5, J6, J7, and
J12. Optionally, view the Clustergram macro function by clicking the Developer tab, and then

clicking the Visual Basic button F‘-_‘::I (If the Developer tab is not on the Excel ribbon, consult
Excel Help to display it.)

For more information on creating macros using Visual Basic Editor, see “Create Diagonal Matrix

Using VBA Macro” (Spreadsheet Link).
4 Execute the formula in cell J17 to analyze and visualize the data:

a Select cell J17.
b Press F2.
¢ Press Enter.

The macro function Clustergram runs creating three MATLAB variables (data, Genes, and
TimeSteps) and displaying a Clustergram window containing dendrograms and a heat map of

the data.

(4 Clustergram 1

File Tools Desktop Window Help

@ | RR0L 0%

el e

9 hours

0 hours
11.5 hours
13.5 hours
15.5 hours
18.5 hours
20.5 hours.

Edit Formulas to Run the Example on a Subset of the Data

1 Edit the formulas in cells J5 and J6 to analyze a subset of the data. Do this by editing the
formulas’ cell ranges to include data for only the first 30 genes:

1-21

1 Getting Started

a Select cell J5, and then press F2 to display the formula for editing. Change H617 to H33,
and then press Enter.

[EMLPuthatrizi"data" B4:H3F]

b Select cell J6, then press F2 to display the formula for editing. Change A617 to A33, and
then press Enter.

[EMLPutMatrixi" Genes" Ad:A33) |
2 Run the formulas in cells J5, J6, J7, and J12 to analyze and visualize a subset of the data:

Select cell J5, press F2, and then press Enter.
Select cell J6, press F2, and then press Enter.
Select cell J7, press F2, and then press Enter.
Select cell J12, press F2, and then press Enter.

Q N T 9

4 Clustergram 2 - O >

File Tools Desktop Window Help u

SR 0a 0B

Efﬁﬁ?ﬁ L

Use the Spreadsheet Link product to Interact With the Data in
MATLAB

Use the MATLAB group on the right side of the Home tab to interact with the data:

BRESEnmD
D@ WD
S0O=0=002

0 10 00 0 000 00 00
=

. DO0000000
s
— ~i
OOZE220=

00
b
=

'_
(]
(75
o

55
(9]

Er) A
S2zA10
mww

[glglerlglgles[islgnus]
I,

aw
DEOC

054
003w
&
2

0=

o S o 1 S e o
T e OO0 =) oCy
g 8
T2

R
L
L
L
RO4
R
L
R

g%
Py
£2

9 hours

0 hours
11.5 hours
13.5 hours
15.5 hours
20.5 hours
18.5 hours

1-22

Exchange Bioinformatics Data Between Excel and MATLAB

o B A
ort & Find &
ilter = Seleck -
19 |\ Start MATLAE

Send data to MATLAE

-

Send named ranges to MATLAR
et data from MATLAE

Run MATLAE command

et MATLAE figure

MATLAE Function YWizard

Preferences
[

For example, create a variable in MATLAB containing a 3-by-7 matrix of the data, plot the data in a
Figure window, and then add the plot to your spreadsheet:

1 Click-drag to select cells B35 through H7.

0.305 0.146 0128 0.444 -0.707 -1.458 -1.935
0.157 0.175 0.467 -0.579 -0.52 -1.279 2125
0.246 0.796 0.334 0.551 1.02 1.646 1.157

From the MATLAB group, select Send data to MATLAB.
Type YAGenes for the variable name, and then click OK.

The variable YAGenes is added to the MATLAB Workspace as a 3-by-7 matrix.
From the MATLAB group, select Run MATLAB command.
5 Type plot(YAGenes ') for the command, and then click OK.

A Figure window displays a plot of the data.

Note Make sure you use the ' (transpose) symbol when plotting the data in this step. You need
to transpose the data in YAGenes so that it plots as three genes over seven time intervals.

6 Select cell J20, and then click from the MATLAB group, select Get MATLAB figure.

The figure is added to the spreadsheet.

1-23

1 Getting Started

1-24

Working with Whole Genome Data

Working with Whole Genome Data

This example shows how to create a memory mapped file for sequence data and work with it without
loading all the genomic sequence into memory. Whole genomes are available for human, mouse, rat,
fugu, and several other model organisms. For many of these organisms one chromosome can be
several hundred million base pairs long. Working with such large data sets can be challenging as you
may run into limitations of the hardware and software that you are using. This example shows one
way to work around these limitations in MATLAB®.

Large Data Set Handling Issues

Solving technical computing problems that require processing and analyzing large amounts of data
puts a high demand on your computer system. Large data sets take up significant memory during
processing and can require many operations to compute a solution. It can also take a long time to
access information from large data files.

Computer systems, however, have limited memory and finite CPU speed. Available resources vary by
processor and operating system, the latter of which also consumes resources. For example:

32-bit processors and operating systems can address up to 2732 = 4,294,967,296 = 4 GB of memory
(also known as virtual address space). Windows® XP and Windows® 2000 allocate only 2 GB of this
virtual memory to each process (such as MATLAB). On UNIX®, the virtual memory allocated to a
process is system-configurable and is typically around 3 GB. The application carrying out the
calculation, such as MATLAB, can require storage in addition to the user task. The main problem
when handling large amounts of data is that the memory requirements of the program can exceed
that available on the platform. For example, MATLAB generates an "out of memory" error when data
requirements exceed approximately 1.7 GB on Windows XP.

For more details on memory management and large data sets, see “Performance and Memory”.

On a typical 32-bit machine, the maximum size of a single data set that you can work with in MATLAB
is a few hundred MB, or about the size of a large chromosome. Memory mapping of files allows
MATLAB to work around this limitation and enables you to work with very large data sets in an
intuitive way.

Whole Genome Data Sets

The latest whole genome data sets can be downloaded from the Ensembl Website. The data are
provided in several formats. These are updated regularly as new sequence information becomes
available. This example will use human DNA data stored in FASTA format. Chromosome 1 is (in the
GRCh37.56 Release of September 2009) a 65.6 MB compressed file. After uncompressing the file it is
about 250MB. MATLAB uses 2 bytes per character, so if you read the file into MATLAB, it will require
about 500MB of memory.

This example assumes that you have already downloaded and uncompressed the FASTA file into your
local directory. Change the name of the variable FASTAfilename if appropriate.

FASTAfilename = 'Homo sapiens.GRCh37.56.dna.chromosome.l.fa’;
fileInfo = dir(which(FASTAfilename))

fileInfo =

1-25

http://www.ensembl.org/info/data/ftp/index.html

1 Getting Started

struct with fields:

name: 'Homo sapiens.GRCh37.56.dna.chromosome.1l.fa’
folder: 'I:\ge\test data\Bioinformatics Toolbox\v000\demoData\biomemorymapdemo'
date: '01-Feb-2013 11:54:41"
bytes: 253404851
isdir: O
datenum: 7.3527e+05

Memory Mapped Files

Memory mapping allows MATLAB to access data in a file as though it is in memory. You can use
standard MATLAB indexing operations to access data. See the documentation for memmapfile for
more details.

You could just map the FASTA file and access the data directly from there. However the FASTA format
file includes new line characters. The memmapfile function treats these characters in the same way
as all other characters. Removing these before memory mapping the file will make indexing
operations simpler. Also, memory mapping does not work directly with character data so you will
have to treat the data as 8-bit integers (uint8 class). The function nt2int in the Bioinformatics
Toolbox™ can be used to convert character information into integer values. int2nt is used to
convert back to characters.

First open the FASTA file and extract the header.

fidIn = fopen(FASTAfilename, 'r');
header = fgetl(fidIn)

header =

'>1 dna:chromosome chromosome:GRCh37:1:1:249250621:1"

Open the file to be memory mapped.

[fullPath, filename, extension] = fileparts(FASTAfilename);
mmFilename = [filename '.mm']
fidOut = fopen(mmFilename, 'w');

mmFilename =

"Homo_sapiens.GRCh37.56.dna.chromosome.1.mm'

Read the FASTA file in blocks of 1MB, remove new line characters, convert to uint8, and write to the
MM file.

newLine = sprintf('\n');
blockSize = 2720;
while ~feof(fidIn)
% Read in the data
charData = fread(fidIn,blockSize, '*char')"';
% Remove new lines
charData = strrep(charData,newLine, '');
% Convert to integers

1-26

Working with Whole Genome Data

intData = nt2int(charData);

% Write to the new file

fwrite(fidOut,intData, 'uint8');
end

Close the files.

fclose(fidIn);
fclose(fidOut);

The new file is about the same size as the old file but does not contain new lines or the header
information.

mmfileInfo = dir(mmFilename)

mmfileInfo
struct with fields:

name: 'Homo sapiens.GRCh37.56.dna.chromosome.l.mm’
folder: 'C:\TEMP\Bdoc23a 2213998 3568\ib570499\37\tp04el505b\bioinfo-ex57563178"'
date: '03-Mar-2023 08:28:07'
bytes: 249250621
isdir: O
datenum: 7.3895e+05

Accessing the Data in the Memory Mapped File

The command memmapfile constructs a memmapfile object that maps the new file to memory. In
order to do this, it needs to know the format of the file. The format of this file is simple, though much
more complicated formats can be mapped.

chrl = memmapfile(mmFilename, 'format', 'uint8')

chrl =

Filename: 'C:\TEMP\Bdoc23a 2213998 3568\1b570499\37\tp04el505b\bioinfo-ex57563178\Homo_sapie
Writable: false

Offset: O
Format: 'uint8'
Repeat: Inf

Data: 249250621x1 uint8 array

The MEMMAPFILE Object

The memmapfile object has various properties. Filename stores the full path to the file. Writable
indicates whether or not the data can be modified. Note that if you do modify the data, this will also
modify the original file. 0f fset allows you to specify the space used by any header information.
Format indicates the data format. Repeat is used to specify how many blocks (as defined by
Format) to map. This can be useful for limiting how much memory is used to create the memory map.
These properties can be accessed in the same way as other MATLAB data. For more details see type
help memmapfile or doc memmapfile.

chrl.Data(1:10)

1-27

1 Getting Started

1-28

ans =

10x1 uint8 column vector

15
15
15
15
15
15
15
15
15
15

You can access any region of the data using indexing operations.

chrl.Data(10000000:10000010) '

ans =

1x11 uint8 row vector

1

Remember that the nucleotide information was converted to integers. You can use int2nt to get the

1

2 2 2

2 3 4

sequence information back.

int2nt(chrl.Data(10000000:10000010) ")

ans =

"AACCCCGTCTC'

Or use seqdisp to display the sequence.

seqdisp(chrl.Data(10000000:10001000)")

ans =

17x71 char array

1
61
121
181
241
301
361
421
481
541

AACCCCGTCT
CCAGCTACTT
TGAGCTGAGA
AAAAAACAAA
TTTTGTTTGT
TCTCAGCTCA
GAGTAGCTAG
GTAGAGACGG
GCCCACCTCA
TTTTTGTATA

CTACAATAAA
GGCGGGCTGA
TTGTGACACT
AAACAAAAAA
TTTGAGACAG
CTGCAAGCTC
GACTATAGGC
GGTTTCATCG
GCCTCCCAAA
TTTTTTTTAG

TTAAAATATT
GGTGGGAGAA
GCACTCCAGC
CAAACCACAA
AGTCTTGCTC
CGCCTCCCGG
ACCCGCCACC
TGTTAGCCAG
GTGCTGGGAT
TAGAGACAGG

AGCTGGGCAT
TCATCCAAGC
CTGGGAGACA
AACTTTCCAG
TGTCGCCCAG
GTTCACACCA
ACGCCCAGCT
GATGGTCTCG
TACAGGCGTG
GTTTCACCAT

GGTGGTGTGT
CTTGGAGGCA
GAGTGAGACT
GTAACTTATT
GCTGGAGTGC
TTCTCCTGCC

GCTTGTAGTC'
GAGGTTGCAG'
CCTACTCAAA'
AAAACATGTT!
AGTGGAGCAA'
TCAGCCTCCC

TATTTTTTTT
ATCTCCTGAC
AGCCACTGCA
GTTAGCCAGG

GTATTTTTTA'
CTCGTGATCC'
CCCGGCCTAG!
ATGGTCTCAA'

Working with Whole Genome Data

" 601 TCTCCTGACC TCGTGATCCG CCCGCCTCGG CCTCCCAAAG TGCTGGGGTT ACAGGCGTGA!
' 661 GCCACCGCAC ACAGCATTAA AGCATGTTTT ATTTTCCTAC ACATAATGAA ATCATTACCA'
' 721 GATGATTTGA CATGTGTACT TCATTGGAGA GGATTCTTAC AGTATATTCA AAATTAAATA'
' 781 TAATGACAAA AAATTACTAC CTAATCTATT AAAATTGGCA TAAGTCATCT ATGATCATTA'
' 841 ATGATATGCA AACATAAACA AGTATTATAC CCAGAAGTGT AATTTATTGT AGCTACATCT'
' 901 TATGTATAAT AGTTTAGTGG ATTTTTCCTG GAAATTGTCC ATTTTAATTT TTCTCTTAAG'
' 961 TCTGTGGAAT TTTCCAGTAA AAGTCAAGGC AAACCCAAGA T

Analysis of the Whole Chromosome

Now that you can easily access the whole chromosome, you can analyze the data. This example shows
one way to look at the GC content along the chromosome.

You extract blocks of 500000bp and calculate the GC content.

Calculate how many blocks to use.

numNT = numel(chrl.Data);
blockSize 500000;
numBlocks floor(numNT/blockSize);

One way to help MATLAB performance when working with large data sets is to "preallocate" space
for data. This allows MATLAB to allocate enough space for all of the data rather than having to grow
the array in small chunks. This will speed things up and also protect you from problems of the data
getting too large to store. For more details on pre-allocating arrays, see: https://www.mathworks.com/
matlabcentral/answers/99124-how-do-i-pre-allocate-memory-when-using-matlab

An easy way to preallocate an array is to use the zeros function.

ratio = zeros(numBlocks+1,1);

Loop over the data looking for C or G and then divide this number by the total number of A, T, C, and
G. This will take about a minute to run.

A = nt2int('A'); C = nt2int('C'); G = nt2int('G'); T = nt2int('T");

for count = 1l:numBlocks
% calculate the indices for the block
start = 1 + blockSize*(count-1);
stop = blockSize*count;
% extract the block
block = chrl.Data(start:stop);
% find the GC and AT content
gc = (sum(block == G | block == ());
at = (sum(block == A | block == T));
% calculate the ratio of GC to the total known nucleotides
ratio(count) = gc/(gc+at);

end

The final block is smaller so treat this as a special case.

block = chrl.Data(stop+l:end);

gc = (sum(block == G | block == C));
at = (sum(block == A | block ==T));
ratio(end) = gc/(gc+at);

1-29

https://www.mathworks.com/matlabcentral/answers/99124-how-do-i-pre-allocate-memory-when-using-matlab
https://www.mathworks.com/matlabcentral/answers/99124-how-do-i-pre-allocate-memory-when-using-matlab

1 Getting Started

1-30

Plot of the GC Content for the Homo Sapiens Chromosome 1

XAXis

= [1l:blockSize:numBlocks*blockSize,

plot(xAxis, ratio)

xlabel('Base pairs');
ylabel('Relative GC content');
title('Relative GC content of Homo Sapiens Chromosome 1')

Relative GC content

0.6

0.55

0.5

0.45

0.4

0.35

0.3

Relative GC content of Homo Sapiens Chromosome 1

numNT];

0.5

1.5

Base pairs

The region in the center of the plot around 140Mbp is a large region of Ns.

seqdisp(chrl.Data(140000000:140001000))

ans =

17x71 char array

1
61
121
181
241
301
361
421
481
541
601

NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN

NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN

NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN

NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN

NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN

NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN

Working with Whole Genome Data

' 661
' 721
' 781
' 841
' 901
' 961

NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN

NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN

NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN
NNNNNNNNNN

Finding Regions of High GC Content

NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN *
NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN '
NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN '
NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN '
NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN '
NNNNNNNNNN N

You can use find to identify regions of high GC content.

indices =

find(ratio>0.5);

ranges = [(1 + blockSize*(indices-1)), blockSize*indices];
fprintf('Region %d:%d has GC content %f\n',[ranges ,ratio(indices)]"')

Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region

1500000
2000000
2500000
3000000
3500000
4000000
6500000
9500000

GC co
GC co
GC co
GC co
GC co
GC co
GC co
GC co
GC
GC
GC
GC
GC

has
has
has
has
has
has
has
has

ntent 0
ntent 0
ntent 0
ntent 0.
ntent 0
ntent 0
ntent 0
ntent 0.
content
content
content
content
content

C content 0.
C content 0.
C content 0.
C content 0.

500001:1000000 has GC content 0.501412
1000001:
1500001:
2000001:
2500001:
3000001:
3500001:
6000001:
9000001:
10500001:11000000 has
11500001:12000000 has
16000001:16500000 has
17500001:18000000 has
21500001:22000000 has
156000001:156500000 has G
156500001:157000000 has G
201000001:201500000 has G
228000001:228500000 has G

.598332
.539498
.594508
568620
.584572
.548137
.545072
506692
0.511386
0.519874
0.513082
0.513392
0.505598

504446
504090
502976
511946

If you want to remove the temporary file, you must first clear the memmapfile object.

clear chrl

delete(mmFilename)

1-31

1 Getting Started

Comparing Whole Genomes

1-32

This example shows how to compare whole genomes for organisms, which allows you to compare the
organisms at a very different resolution relative to single gene comparisons. Instead of just focusing
on the differences between homologous genes you can gain insight into the large-scale features of
genomic evolution.

This example uses two strains of Chlamydia, Chlamydia trachomatis and Chlamydophila pneumoniae.
These are closely related bacteria that cause different, though both very common, diseases in
humans. Whole genomes are available in the GenBank® database for both organisms.

Retrieving the Genomes

You can download these genomes using the getgenbank function. First, download the Chlamydia
trachomatis genome. Notice that the genome is circular and just over one million bp in length. These
sequences are quite large so may take a while to download.

seqtrachomatis = getgenbank('NC 000117"');

Next, download Chlamydophila pneumoniae. This genome is also circular and a little longer at 1.2
Mbp.

segpneumoniae = getgenbank('NC 002179"');

For your convenience, previously downloaded sequences are included in a MAT-file. Note that data in
public repositories is frequently curated and updated. Hence, the results of this example might be
slightly different when you use up-to-date datasets.

load('chlamydia.mat', 'seqtrachomatis', 'seqpneumoniae’)

A very simple approach for comparing the two genomes is to perform pairwise alignment between all
genes in the genomes. Given that these are bacterial genomes, a simple approach would be to
compare all ORFs in the two genomes. However, the GenBank data includes more information about
the genes in the sequences. This is stored in the CDS field of the data structure. Chlamydia
trachomatis has 895 coding regions, while Chlamydophila pneumoniae has 1112.

M = numel(seqtrachomatis.CDS)
N = numel(segpneumoniae.CDS)
M =

895
N =

1112

Most of the CDS records contain the translation to amino acid sequences. The first CDS record in the
Chlamydia trachomatis data is a hypothetical protein of length 591 residues.

seqtrachomatis.CDS(1)

Comparing Whole Genomes

ans =

struct with fields:

location:
gene:
product:
codon_start:
indices:
protein id:
db xref:
note:
translation:
text:

'join(1041920..1042519,1..1176)"

[]

"hypothetical protein'

I1I

[1041920 1042519 1 1176]

"NP_219502.1"

'GenelD:884145"

[
"MSIRGVGGNGNSRIPSHNGDGSNRRSQNTKGNNKVEDRVCSLYSSRSNENRESPYAVVDVSSMIESTPTSGETTRASRI(
[19x58 char]

The fourth CDS record is for the gatA gene, which has product glutamyl-tRNA amidotransferase
subunit A. The length of the product sequence is 491 residues.

seqtrachomatis.CDS(4)

ans =

struct with fields:

location:
gene:
product:
codon_start:
indices:
protein id:
db xref:
note:
translation:
text:

'2108..3583"

‘gatA’

[2x47 char]

1

[2168 3583]

"NP_219505.1"

'GeneID:884087"'

[7x58 char]
"MYRKSALELRDAVVNRELSVTAITEYFYHRIESHDEQIGAFLSLCKERALLRASRIDDKLAKGDPIGLLAGIPIGVKDI
[26x58 char]

A few of the Chlamydophila pneumoniae CDS have empty translations. Fill them in as follows. First,
find all empty translations, then display the first empty translation.

missingPn = find(cellfun(@isempty, {segpneumoniae.CDS.translation}));
segpneumoniae.CDS(missingPn (1))

ans =

struct with fields:

location:
gene:
product:
codon_start:
indices:
protein id:
db_xref:
note:

"complement(73364..73477)"

[

"hypothetical protein'

I1I

[73477 73364]

'NP_444613.1"'

'GenelID:963699'

"hypothetical protein; identified by Glimmer2'

1-33

1 Getting Started

translation: []
text: [10x52 char]

The function featureparse extracts features, such as the CDS, from the sequence structure. You
can then use cellfun to apply nt2aa to the sequences with missing translations.

allCDS = featureparse(seqpneumoniae, 'Feature','CDS', 'Sequence', true);
missingSeqs = cellfun(@nt2aa,{allCDS(missingPn).Sequence}, 'uniform', false);
[seqpneumoniae.CDS(missingPn).translation] = deal(missingSeqs{:});
segpneumoniae.CDS(missingPn(1))

ans =
struct with fields:

location: 'complement(73364..73477)'
gene: []
product: 'hypothetical protein'
codon_start: '1°
indices: [73477 73364]
protein _id: 'NP_444613.1°
db xref: 'GeneID:963699'
note: 'hypothetical protein; identified by Glimmer2'
translation: 'MLTDQRKHIQMLHKHNSIEIFLSNMVVEVKLFFKTLK*'
text: [10x52 char]

Performing Gene Comparisons

To compare the gatA gene in Chlamydia trachomatis with all the CDS genes in Chlamydophila
pneumoniae, put a for loop around the nwalign function. You could alternatively use local
alignment (swalign).

tic
gatAScores = zeros(1,N);
for inner = 1:N
gatAScores(inner) = nwalign(seqtrachomatis.CDS(4).translation, ...
segpneumoniae.CDS(inner).translation);
end
toc % |tic| and |toc| are used to report how long the calculation takes.

Elapsed time is 2.181185 seconds.
A histogram of the scores shows a large number of negative scores and one very high positive score.
hist(gatAScores,100)

title(sprintf(['Alignment Scores for Chlamydia trachomatis %s\n',...
'with all CDS in Chlamydophila pneumoniae'],seqtrachomatis.CDS(4).gene))

1-34

Comparing Whole Genomes

Alignment Scores for Chlamydia trachomatis gatA
with all CDS in Chlamydophila pneumoniae

120 T

100

80

G0

40

20

0
-3000 -2500 -2000 -1500 -1000 -500 0 500 1000

As expected, the high scoring match is with the gatA gene in Chlamydophila pneumoniae.

[gatABest, gatABestIdx] = max(gatAScores);
segpneumoniae.CDS(gatABestIdx)

ans =
struct with fields:

location: 'complement(838828..840306)"
gene: 'gatA’
product: [2x47 char]
codon_start: '1'
indices: [840306 838828]
protein _id: 'NP_445311.1°
db xref: 'GeneID:963139'
note: [7x58 char]
translation: 'MYRYSALELAKAVTLGELTATGVTQHFFHRIEEAEGQVGAFISLCKEQALEQAELIDKKRSRGEPLGKLAGVPVGIKDI
text: [26x58 char]

The pairwise alignment of one gene from Chlamydia trachomatis with all genes from Chlamydophila

pneumoniae takes just under a minute on an Intel® Pentium 4, 2.0 GHz machine running Windows®
XP. To do this calculation for all 895 CDS in Chlamydia trachomatis would take about 12 hours on the
same machine. Uncomment the following code if you want to run the whole calculation.

1-35

1 Getting Started

1-36

scores = zeros(M,N);
parfor outer = 1:M
theScore = zeros(1,outer);
theSeq = seqtrachomatis.CDS(outer).translation;
for inner = 1:N
theScore(inner) = ...
nwalign(theSeq, ...
segpneumoniae.CDS(inner).translation);
end
scores(outer,:) = theScore;
end

Note the command parfor is used in the outer loop. If your machine is configured to run multiple
labs then the outer loop will be executed in parallel. For a full understanding of this construct, see
doc parfor.

Investigating the Meaning of the Scores

The distributions of the scores for several genes show a pattern. The CDS(3) of Chlamydia
trachomatis is the gatC gene. This has a relatively short product,aspartyl/glutamyl-tRNA
amidotransferase subunit C, with only 100 residues.

gatCScores = zeros(1,N);
for inner = 1:N
gatCScores(inner) = nwalign(seqtrachomatis.CDS(3).translation,...
segpneumoniae.CDS(inner).translation);
end
figure
hist(gatCScores, 100)
title(sprintf(['Alignment Scores for Chlamydia trachomatis %s\n',...
'with all CDS in Chlamydophila pneumoniae'],seqtrachomatis.CDS(3).gene))
xlabel('Score');ylabel('Number of genes');

Comparing Whole Genomes

Alignment Scores for Chlamydia trachomatis gatC
with all CDS in Chlamydophila pneumoniae

120 T

100

80

G0

Mumber of genes

40

20

0
-4500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 0 500

Score

The best score again corresponds to the same gene in the Chlamydophila pneumoniae.

[gatCBest, gatCBestIdx] = max(gatCScores);
segpneumoniae.CDS(gatCBestIdx) .product

ans =
2x47 char array

'aspartyl/glutamyl-tRNA amidotransferase subunit'
1 C 1

CDS(339) of Chlamydia trachomatis is the uvrA gene. This has a very long product, excinuclease ABC
subunit A, of length 1786.

uvrAScores = zeros(1,N);
for inner = 1:N
uvrAScores(inner) = nwalign(seqtrachomatis.CDS(339).translation,...
segpneumoniae.CDS(inner).translation);
end
figure
hist(uvrAScores,100)
title(sprintf(['Alignment Scores for Chlamydia trachomatis %s\n',...
‘'with all CDS in Chlamydophila pneumoniae'],seqtrachomatis.CDS(339).gene))
xlabel('Score');ylabel('Number of genes');

1-37

1 Getting Started

[uvrABest, uvrABestIdx] = max(uvrAScores);
segpneumoniae.CDS(uvrABestIdx)

ans =
struct with fields:

location: '716887..722367'
gene: []
product: 'excinuclease ABC subunit A'
codon_start: '1'
indices: [716887 722367]
protein id: 'NP 445220.1°
db _xref: 'GeneID:963214'
note: [6x58 char]
translation: 'MKSLPVYVSGIKVRNLKNVSIHFNSEEIVLLTGVSGSGKSSIAFDTLYAAGRKRYISTLPTFFATTITTLPNPKVEEI!
text: [46x58 char]

Alignment Scores for Chlamydia trachomatis uvrA
with all CDS in Chlamydophila pneumoniae

50 T

Mumber of genes

i I | |
=-5000 4000 -3000 =2000 =1000 0 1000 2000 3000
Score

The distribution of the scores is affected by the length of the sequences, with very long sequences
potentially having much higher or lower scores than shorter sequences. You can normalize for this in
a number of ways. One way is to divide by the length of the sequences.

lnormgatABest = gatABest./length(seqtrachomatis.CDS(4).product)
lnormgatCBest = gatCBest./length(seqtrachomatis.CDS(3).product)
lnormuvrABest = uvrABest./length(seqtrachomatis.CDS(339).product)

1-38

Comparing Whole Genomes

lnormgatABest

16.8794

lnormgatCBest

2.2695

lnormuvrABest

78.9615

An alternative normalization method is to use the self alignment score, that is the score from aligning
the sequence with itself.

gatASelf = nwalign(seqtrachomatis.CDS
seqtrachomatis.CDS(4).translation

gatCSelf = nwalign(seqtrachomatis.CDS
seqtrachomatis.CDS(3).translation);

uvrASelf = nwalign(seqtrachomatis.CDS(339).translation,...
seqtrachomatis.CDS(339).translation);

normgatABest gatABest./gatASelf

normgatCBest gatCBest./gatCSelf

normuvrABest uvrABest./uvrASelf

4) .translation,...

3).translation, ...

normgatABest

0.7380

normgatCBest

0.5212

normuvrABest

0.5253

Using Sparse Matrices to Reduce Memory Usage

The all-against-all alignment calculation not only takes a lot of time, it also generates a large matrix
of scores. If you are looking for similar genes across species, then the scores that are interesting are
the positive scores that indicate good alignment. However, most of these scores are negative, and the
actual values are not particularly useful for this type of study. Sparse matrices allow you to store the
interesting values in a more efficient way.

The sparse matrix, spScores, in the MAT-file chlamydia.mat contains the positive values from the
all against all pairwise alignment calculation normalized by self-alignment score.

load('chlamydia.mat', 'spScores"')

1-39

1 Getting Started

1-40

With the matrix of scores you can look at the distribution of scores of Chlamydophila pneumoniae
genes aligned with Chlamydia trachomatis and the converse of this, Chlamydia trachomatis genes
aligned with Chlamydophila pneumoniae genes

figure

subplot(2,1,1)

hist(max(spScores),100)

title('Highest Alignment Scores for Chlamydophila pneumoniae Genes')
xlabel('Score');ylabel('Number of genes');

subplot(2,1,2)

hist(max(spScores,[]1,2),100)

title('Highest Alignment Scores for Chlamydia trachomatis Genes')
xlabel('Score');ylabel('Number of genes');

Highest Alignment Scores for Chlamydophila pneumoniae Genes

200 ' 1
25}
Jai]
5 150
Ly]
i<
L 100
£
= &D
=
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.8 1
score
Highest Alignment Scores for Chlamydia trachomatis Genes
40 T T T T T T T T T B
Liy]
[E]
I 30
T
C 20
8]
E
=10
=
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1
Score

Remember that there are 1112 CDS in Chlamydophila pneumoniae and only 895 in Chlamydia
trachomatis. The high number of zero scores in the top histogram indicates that many of the extra
CDS in Chlamydophila pneumoniae do not have good matches in Chlamydia trachomatis.

Another way to visualize the data is to look at the positions of points in the scores matrix that are
positive. The sparse function spy is an easy way to quickly view dotplots of matrices. This shows
some interesting structure in the positions of the high scoring matches.

figure
spy(spScores > 0)
title(sprintf('Dot Plot of High-Scoring Alignments.\nNormalized Threshold = 0'))

Comparing Whole Genomes

Dot Plot of High-Scoring Alignments.
Normalized Threshold = 0

0 .. - |I ,. Ny T B -__ T f ¢ T I . 2 T

oS o CENL T T U

- TN
L - & = & s &
- e . : - s S . . Rl T
200 e Freroaet o M L, S e e LR T

200 b-.- | _:r-’-\i\,,l. i -_ .: .I‘-I-.__

400" .

500 L . S0 s el T e e

T B Rt LI I

0 200 400 600 BOO 1000
nz = 1920

Raise the threshold a little higher to see clear diagonal lines in the plot.

spy(spScores >.1)
title(sprintf('Dot Plot of High-Scoring Alignments.\nNormalized Threshold = 0.1'))

1-41

1 Getting Started

Dot Plot of High-Scoring Alignments.
Normalized Threshold = 0.1
D T w T T J’ =1 T

100 f s \ : .

200 - - 3 N |
w0 S 1
400 | S o T
500 / . | -
600 | _ N
700 \ . S -

soo | | - oy]

0 200 400 600 BOO 1000
nz = 905

Remember that these are circular genomes, and it seems that the starting points in GenBank are
arbitrary. Permute the scores matrix so that the best match of the first CDS in Chlamydophila
pneumoniae is in the first row to see a clear diagonal plot. This shows the synteny between the two
organisms.

[bestScore bestMatch] = max(spScores(:,1));

spy(spScores([bestMatch:end 1:bestMatch-1],:)>.1);
title('Synteny Plot of Chlamydophila pneumoniae and Chlamydia trachomatis')

1-42

Comparing Whole Genomes

Synteny Plot of Chlamydophila pneumoniae and Chlamydia trachomatis
0rF ' ' R ' '
AN . ‘
100 : _ / 1

200 ’ S/ .

iy .,

300 N . o |

bl

400 |- Lo]
500 | - o 7 .
600 | N]
e SR . |

800 _ 4

W] 200 400 600 BOO 1000
nz = 905

Looking for Homologous Genes

Genes in different genomes that are related to each other are said to be homologous. Similarity can
be by speciation (orthologous genes) or by replication (paralogous genes). Having the scoring matrix
lets you look for both types of relationships.

The most obvious way to find orthologs is to look for the highest scoring pairing for each gene. If the
score is significant then these best reciprocal pairs are very likely to be orthologous.

[bestScores, bestIndices] = max(spScores);

The variable bestIndices contains the index of the best reciprocal pairs for the genes in
Chlamydophila pneumoniae. Sort the best scores and create a table to compare the description of the
best reciprocal pairs and discover very high similarity between the highest scoring best reciprocal
pairs.

[orderedScores, permScores] = sort(full(bestScores), 'descend');

matches = [num2cell(orderedScores)',num2cell(bestIndices(permScores))’', ...
num2cell((permScores))', ...
{seqgtrachomatis.CDS(bestIndices(permScores)).product;...
seqgpneumoniae.CDS((permScores)) .product; }'];

for count = 1:7
fprintf(['Score %f\nChlamydia trachomatis Gene %s\n', ...
'Chlamydophila pneumoniae Gene : %s\n\n'],...
matches{count,1}, matches{count,4}, matches{count,5})
end

1-43

1 Getting Started

Score 0.982993
Chlamydia trachomatis Gene : 50S ribosomal protein L36
Chlamydophila pneumoniae Gene : 50S ribosomal protein L36

Score 0.981818
Chlamydia trachomatis Gene : 30S ribosomal protein S15
Chlamydophila pneumoniae Gene : 30S ribosomal protein S15

Score 0.975422
Chlamydia trachomatis Gene : integration host factor alpha-subunit
Chlamydophila pneumoniae Gene : integration host factor beta-subunit

Score 0.971647
Chlamydia trachomatis Gene : 50S ribosomal protein L16
Chlamydophila pneumoniae Gene : 50S ribosomal protein L16

Score 0.970105

Chlamydia trachomatis Gene : 30S ribosomal protein S10
Chlamydophila pneumoniae Gene : 30S ribosomal protein S10

Score 0.969554

Chlamydia trachomatis Gene : rod shape-determining protein MreB
Chlamydophila pneumoniae Gene : rod shape-determining protein MreB
Score 0.953654

Chlamydia trachomatis Gene : hypothetical protein
Chlamydophila pneumoniae Gene : hypothetical protein

You can use the Variable Editor to look at the data in a spreadsheet format.
open('matches"')

Compare the descriptions to see that the majority of the best reciprocal pairs have identical

descriptions.
exactMatches = strcmpi(matches(:,4),matches(:,5));
sum(exactMatches)
ans =
808

Perhaps more interesting are the best reciprocal pairs where the descriptions are not identical. Some
are simply differences in how the same gene is described, but others show quite different
descriptions.

mismatches = matches(~exactMatches, :);
for count = 1:7
fprintf(['Score %f\nChlamydia trachomatis Gene : %s\n',...
'Chlamydophila pneumoniae Gene : %s\n\n'],...
mismatches{count,1}, mismatches{count,4}, mismatches{count,5})
end

Score 0.975422
Chlamydia trachomatis Gene : integration host factor alpha-subunit

1-44

Comparing Whole Genomes

Chlamydophila pneumoniae Gene :

Score 0.929565
Chlamydia trachomatis Gene

Score 0.905000
Chlamydia trachomatis Gene

Score 0.903226
Chlamydia trachomatis Gene

Score 0.896212
Chlamydia trachomatis Gene

Score 0.890705
Chlamydia trachomatis Gene

Chlamydophila pneumoniae Gene :

Score 0.884234
Chlamydia trachomatis Gene

View data for mismatches.

open('mismatches')

integration host factor beta-subunit

: low calcium response D
Chlamydophila pneumoniae Gene :

type III secretion inner membrane protein SctV

: NrdR family transcriptional regulator
Chlamydophila pneumoniae Gene :

transcriptional regulator NrdR

: Yop proteins translocation protein S
Chlamydophila pneumoniae Gene :

type III secretion inner membrane protein SctS

: ATP-dependent protease ATP-binding subunit ClpX
Chlamydophila pneumoniae Gene :

ATP-dependent protease ATP-binding protein ClpX

ribonuclease E
ribonuclease G

: ClpC protease ATPase
Chlamydophila pneumoniae Gene :

ATP-dependent Clp protease ATP-binding protein

Once you have the scoring matrix this opens up many possibilities for further investigation. For
example, you could look for CDS where there are multiple high scoring reciprocal CDS. See
Cristianini and Hahn [1] for further ideas.

References

[1] Cristianini, N. and Hahn, M.W,, "Introduction to Computational Genomics: A Case Studies
Approach”, Cambridge University Press, 2007.

See Also

getgenbank | nwalign | featureparse

1-45

High-Throughput Sequence Analysis

“Work with Next-Generation Sequencing Data” on page 2-2

“Manage Sequence Read Data in Objects” on page 2-6

“Store and Manage Feature Annotations in Objects” on page 2-16

“Bioinformatics Toolbox Software Support Packages” on page 2-21

“Count Features from NGS Reads” on page 2-23

“Identifying Differentially Expressed Genes from RNA-Seq Data” on page 2-32

“Visualize NGS Data Using Genomics Viewer App” on page 2-52

“Exploring Genome-Wide Differences in DNA Methylation Profiles” on page 2-58

“Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data” on page 2-79

“Working with Illumina/Solexa Next-Generation Sequencing Data” on page 2-97

“Bioinformatics Pipeline SplitDimension” on page 2-107

“Split Input SAM files and Assemble Transcriptomes Using Bioinformatics Pipeline” on page 2-109
“Bioinformatics Pipeline Run Mode” on page 2-111

“Create Simple Pipeline to Plot Sequence Quality Data Using Biopipeline Designer” on page 2-112
“Count RNA-Seq Reads Using Biopipeline Designer” on page 2-122

2 High-Throughput Sequence Analysis

Work with Next-Generation Sequencing Data

2-2

In this section...

“Overview” on page 2-2

“What Files Can You Access?” on page 2-2

“Before You Begin” on page 2-3

“Create a BiolndexedFile Object to Access Your Source File” on page 2-3
“Determine the Number of Entries Indexed By a BiolndexedFile Object” on page 2-3
“Retrieve Entries from Your Source File” on page 2-4

“Read Entries from Your Source File” on page 2-4

Overview

Many biological experiments produce huge data files that are difficult to access due to their size,
which can cause memory issues when reading the file into the MATLAB Workspace. You can construct
a BioIndexedFile ohject to access the contents of a large text file containing nonuniform size
entries, such as sequences, annotations, and cross-references to data sets. The BioIndexedFile
object lets you quickly and efficiently access this data without loading the source file into memory.

You can use the BioIndexedFile object to access individual entries or a subset of entries when the
source file is too big to fit into memory. You can access entries using indices or keys. You can read and
parse one or more entries using provided interpreters or a custom interpreter function.

Use the BioIndexedFile object in conjunction with your large source file to:

* Access a subset of the entries for validation or further analysis.
» Parse entries using a custom interpreter function.

What Files Can You Access?

You can use the BioIndexedFile object to access large text files.

Your source file can have these application-specific formats:

« FASTA
+ FASTQ
+ SAM

Your source file can also have these general formats:
* Table — Tab-delimited table with multiple columns. Keys can be in any column. Rows with the

same key are considered separate entries.

* Multi-row Table — Tab-delimited table with multiple columns. Keys can be in any column.
Contiguous rows with the same key are considered a single entry. Noncontiguous rows with the
same key are considered separate entries.

+ Flat — Flat file with concatenated entries separated by a character vector, typically //. Within an
entry, the key is separated from the rest of the entry by a white space.

Work with Next-Generation Sequencing Data

Before You Begin

Before constructing a BioIndexedFile object, locate your source file on your hard drive or a local
network.

When you construct a BioIndexedFile object from your source file for the first time, you also
create an auxiliary index file, which by default is saved to the same location as your source file.
However, if your source file is in a read-only location, you can specify a different location to save the
index file.

Tip If you construct a BioIndexedFile object from your source file on subsequent occasions, it
takes advantage of the existing index file, which saves time. However, the index file must be in the
same location or a location specified by the subsequent construction syntax.

Tip If insufficient memory is not an issue when accessing your source file, you may want to try an
appropriate read function, such as genbankread, for importing data from GenBank files. .

Additionally, several read functions such as fastaread, fastqread, samread, and sffread include
a Blockread property, which lets you read a subset of entries from a file, thus saving memory.

Create a BiolndexedFile Object to Access Your Source File

To construct a BioIndexedFile object from a multi-row table file:

1 Create a variable containing the full absolute path of your source file. For your source file, use
the yeastgenes.sgd file, which is included with the Bioinformatics Toolbox software.

sourcefile = which('yeastgenes.sgd');

2 Use the BioIndexedFile constructor function to construct a BioIndexedFile object from the
yeastgenes.sgd source file, which is a multi-row table file. Save the index file in the Current
Folder. Indicate that the source file keys are in column 3. Also, indicate that the header lines in
the source file are prefaced with !, so the constructor ignores them.

gene2goObj = BioIndexedFile('mrtab', sourcefile, '.', ...
'KeyColumn', 3, 'HeaderPrefix','!")

The BioIndexedFile constructor function constructs gene2go0Obj, a BioIndexedFile object,
and also creates an index file with the same name as the source file, but with an IDX extension. It
stores this index file in the Current Folder because we specified this location. However, the
default location for the index file is the same location as the source file.

Caution Do not modify the index file. If you modify it, you can get invalid results. Also, the
constructor function cannot use a modified index file to construct future objects from the
associated source file.

Determine the Number of Entries Indexed By a BiolndexedFile Object

To determine the number of entries indexed by a BioIndexedFile object, use the NumEntries
property of the BioIndexedFile object. For example, for the gene2go0bj object:

gene2goObj.NumEntries

2-3

2 High-Throughput Sequence Analysis

2-4

ans =

6476

Note For a list and description of all properties of the object, see BioIndexedFile.

Retrieve Entries from Your Source File

Retrieve entries from your source file using either:

* The index of the entry
* The entry key

Retrieve Entries Using Indices

Use the getEntryByIndex method to retrieve a subset of entries from your source file that
correspond to specified indices. For example, retrieve the first 12 entries from the yeastgenes.sgd
source file:

subset entries = getEntryByIndex(gene2goObj, [1:12]);

Retrieve Entries Using Keys

Use the getEntryByKey method to retrieve a subset of entries from your source file that are
associated with specified keys. For example, retrieve all entries with keys of AAC1 and AAD10 from
the yeastgenes. sgd source file:

subset entries = getEntryByKey(gene2goObj, {'AAC1' 'AAD10'});

The output subset _entries is a character vector of concatenated entries. Because the keys in the

yeastgenes.sgd source file are not unique, this method returns all entries that have a key of AAC1
or AAD10.

Read Entries from Your Source File

The BioIndexedFile object includes a read method, which you can use to read and parse a subset
of entries from your source file. The read method parses the entries using an interpreter function
specified by the Interpreter property of the BioIndexedFile object.

Set the Interpreter Property

Before using the read method, make sure the Interpreter property of the BioIndexedFile
object is set appropriately.

If you constructed a BiolndexedFile The Interpreter property ...

object from ...

A source file with an application-specific By default is a handle to a function appropriate for that
format (FASTA, FASTQ, or SAM) file type and typically does not require you to change it.

Work with Next-Generation Sequencing Data

If you constructed a BiolndexedFile The Interpreter property ...
object from ...

A source file with a table, multi-row table, or |By default is [], which means the interpreter is an

flat format anonymous function in which the output is equivalent to
the input. You can change this to a handle to a function
that accepts a character vector of one or more
concatenated entries and returns a structure or an
array of structures containing the interpreted data.

There are two ways to set the Interpreter property of the BioIndexedFile object:

* When constructing the BioIndexedFile object, use the Interpreter property name/property
value pair

» After constructing the BioIndexedFile object, set the Interpreter property

Note For more information on setting the Interpreter property of the object, see
BioIndexedFile.

Read a Subset of Entries

The read method reads and parses a subset of entries that you specify using either entry indices or
keys.

Example

To quickly find all the gene ontology (GO) terms associated with a particular gene because the entry
keys are gene names:

1 Setthe Interpreter property of the gene2goObj BioIndexedFile object to a handle to a
function that reads entries and returns only the column containing the GO term. In this case the
interpreter is a handle to an anonymous function that accepts character vectors and extracts
those that start with the characters GO.

gene2go0Obj.Interpreter = @(x) regexp(x,'GO:\d+', 'match"')
2 Read only the entries that have a key of YAT2, and return their GO terms.

GO YAT2 entries = read(gene2goObj, 'YAT2')
GO YAT2 entries =

'G0:0004092"' 'G0:0005737' 'GO:0006066' 'GO:0006066' 'GO:0009437'

2-5

2 High-Throughput Sequence Analysis

Manage Sequence Read Data in Objects

2-6

In this section...

“Overview” on page 2-6

“Represent Sequence and Quality Data in a BioRead Object” on page 2-7

“Represent Sequence, Quality, and Alignment/Mapping Data in a BioMap Object” on page 2-8
“Retrieve Information from a BioRead or BioMap Object” on page 2-10

“Set Information in a BioRead or BioMap Object” on page 2-12

“Determine Coverage of a Reference Sequence” on page 2-12

“Construct Sequence Alignments to a Reference Sequence” on page 2-13

“Filter Read Sequences Using SAM Flags” on page 2-14

Overview

High-throughput sequencing instruments produce large amounts of sequence read data that can be
challenging to store and manage. Using objects to contain this data lets you easily access,
manipulate, and filter the data.

Bioinformatics Toolbox includes two objects for working with sequence read data.

Object Contains This Information Construct from One of These
BioRead * Sequence headers ¢ FASTQ file

* Read sequences * SAM file

* Sequence qualities (base calling) * FASTQ structure (created using the

fastqread function)

* SAM structure (created using the
samread function)

* Cell arrays containing header,
sequence, and quality information
(created using the fastqread

function)
BioMap * Sequence headers o SAM file
* Read sequences * BAM file
* Sequence qualities (base calling) * SAM structure (created using the
*+ Sequence alignment and mapping samread function)
information (relative to a single * BAM structure (created using the
reference sequence), including bamread function)
mapping quality + Cell arrays containing header,

sequence, quality, and mapping/
alignment information (created using
the samread or bamread function)

Manage Sequence Read Data in Objects

Represent Sequence and Quality Data in a BioRead Object
Prerequisites

A BioRead object represents a collection of sequence reads. Each element in the object is associated
with a sequence, sequence header, and sequence quality information.

Construct a BioRead object in one of two ways:

* Indexed — The data remains in the source file. Constructing the object and accessing its contents
is memory efficient. However, you cannot modify object properties, other than the Name property.
This is the default method if you construct a BioRead object from a FASTQ- or SAM-formatted
file.

* In Memory — The data is read into memory. Constructing the object and accessing its contents is
limited by the amount of available memory. However, you can modify object properties. When you
construct a BioRead object from a FASTQ structure or cell arrays, the data is read into memory.
When you construct a BioRead object from a FASTQ- or SAM-formatted file, use the InMemory
name-value pair argument to read the data into memory.

Construct a BioRead Object from a FASTQ- or SAM-Formatted File

Note This example constructs a BioRead object from a FASTQ-formatted file. Use similar steps to
construct a BioRead object from a SAM-formatted file.

Use the BioRead constructor function to construct a BioRead object from a FASTQ-formatted file
and set the Name property:

BRObj 1

BioRead('SRR005164 1 50.fastq', 'Name', 'MyObject')

BRObj 1

BioRead with properties:

Quality: [50x1 File indexed property]
Sequence: [50x1 File indexed property]
Header: [50x1 File indexed property]
NSeqs: 50
Name: 'MyObject'’

The constructor function construct a BioRead object and, if an index file does not already exist, it
also creates an index file with the same file name, but with an .IDX extension. This index file, by
default, is stored in the same location as the source file.

Caution Your source file and index file must always be in sync.
» After constructing a BioRead object, do not modify the index file, or you can get invalid results
when using the existing object or constructing new objects.

+ If you modify the source file, delete the index file, so the object constructor creates a new index
file when constructing new objects.

2-7

2 High-Throughput Sequence Analysis

2-8

Note Because you constructed this BioRead object from a source file, you cannot modify the
properties (except for Name) of the BioRead object.

Represent Sequence, Quality, and Alignment/Mapping Data in a
BioMap Object

Prerequisites

A BioMap object represents a collection of sequence reads that map against a single reference
sequence. Each element in the object is associated with a read sequence, sequence header, sequence
quality information, and alignment/mapping information.

When constructing a BioMap object from a BAM file, the maximum size of the file is limited by your
operating system and available memory:.

Construct a BioMap object in one of two ways:

* Indexed — The data remains in the source file. Constructing the object and accessing its contents
is memory efficient. However, you cannot modify object properties, other than the Name property.
This is the default method if you construct a BioMap object from a SAM- or BAM-formatted file.

* In Memory — The data is read into memory. Constructing the object and accessing its contents is
limited by the amount of available memory. However, you can modify object properties. When you
construct a BioMap object from a structure, the data stays in memory. When you construct a
BioMap object from a SAM- or BAM-formatted file, use the InMemory name-value pair argument
to read the data into memory.

Construct a BioMap Object from a SAM- or BAM-Formatted File

Note This example constructs a BioMap object from a SAM-formatted file. Use similar steps to
construct a BioMap object from a BAM-formatted file.

1 Ifyou do not know the number and names of the reference sequences in your source file,
determine them using the saminfo or baminfo function and the ScanDictionary name-value
pair argument.

samstruct = saminfo('ex2.sam', 'ScanDictionary', true);
samstruct.ScannedDictionary

ans =

'seql’
'seq2’

Tip The previous syntax scans the entire SAM file, which is time consuming. If you are confident
that the Header information of the SAM file is correct, omit the ScanDictionary name-value
pair argument, and inspect the SequenceDictionary field instead.

2 Use the BioMap constructor function to construct a BioMap object from the SAM file and set the
Name property. Because the SAM-formatted file in this example, ex2.sam, contains multiple
reference sequences, use the SelectRef name-value pair argument to specify one reference
sequence, seql:

Manage Sequence Read Data in Objects

BMObj2 = BioMap('ex2.sam', 'SelectRef', 'seql', 'Name', 'MyObject')
BMObj2 =
BioMap with properties:

SequenceDictionary: 'seql'

Reference: [1501x1 File indexed property]
Signature: [1501x1 File indexed property]
Start: [1501x1 File indexed property]
MappingQuality: [1501x1 File indexed property]
Flag: [1501x1 File indexed property]
MatePosition: [1501x1 File indexed property]
Quality: [1501x1 File indexed property]
Sequence: [1501x1 File indexed property]
Header: [1501x1 File indexed property]

NSeqs: 1501

Name: 'MyObject’

The constructor function constructs a BioMap object and, if index files do not already exist, it also
creates one or two index files:

If constructing from a SAM-formatted file, it creates one index file that has the same file name as
the source file, but with an .IDX extension. This index file, by default, is stored in the same
location as the source file.

If constructing from a BAM-formatted file, it creates two index files that have the same file name
as the source file, but one with a .BAI extension and one with a .LINEARINDEX extension. These
index files, by default, are stored in the same location as the source file.

Caution Your source file and index files must always be in sync.

After constructing a BioMap object, do not modify the index files, or you can get invalid results
when using the existing object or constructing new objects.

If you modify the source file, delete the index files, so the object constructor creates new index
files when constructing new objects.

Note Because you constructed this BioMap object from a source file, you cannot modify the
properties (except for Name and Reference) of the BioMap object.

Construct a BioMap Object from a SAM or BAM Structure

Note This example constructs a BioMap object from a SAM structure using samread. Use similar
steps to construct a BioMap object from a BAM structure using bamread.

Use the samread function to create a SAM structure from a SAM-formatted file:

SAMStruct = samread('ex2.sam');

To construct a valid BioMap object from a SAM-formatted file, the file must contain only one
reference sequence. Determine the number and names of the reference sequences in your SAM-

2-9

2 High-Throughput Sequence Analysis

2-10

formatted file using the unique function to find unique names in the ReferenceName field of
the structure:

unique ({SAMStruct.ReferenceName})
ans =

'seql’ 'seq2'’

3 Use the BioMap constructor function to construct a BioMap object from a SAM structure.
Because the SAM structure contains multiple reference sequences, use the SelectRef name-
value pair argument to specify one reference sequence, seql:

BMObjl = BioMap(SAMStruct, 'SelectRef', 'seql')

BMObj 1

BioMap with properties:

SequenceDictionary: {'seql'}
Reference: {1501x1 cell}
Signature: {1501x1 cell}
Start: [1501x1 uint32]
MappingQuality: [1501x1 uint8]
Flag: [1501x1 uintl6]
MatePosition: [1501x1 uint32]

Quality: {1501x1 cell}

Sequence: {1501x1 cell}

Header: {1501x1 cell}

NSeqs: 1501
Name: "'

Retrieve Information from a BioRead or BioMap Object

You can retrieve all or a subset of information from a BioRead or BioMap object.

Retrieve a Property from a BioRead or BioMap Object

You can retrieve a specific property from elements in a BioRead or BioMap object.

For example, to retrieve all headers from a BioRead object, use the Header property as follows:
allHeaders = BRObjl.Header;

This syntax returns a cell array containing the headers for all elements in the BioRead object.

Similarly, to retrieve all start positions of aligned read sequences from a BioMap object, use the
Start property of the object:

allStarts = BMObjl.Start;

This syntax returns a vector containing the start positions of aligned read sequences with respect to
the position numbers in the reference sequence in a BioMap object.

Manage Sequence Read Data in Objects

Retrieve Multiple Properties from a BioRead or BioMap Object

You can retrieve multiple properties from a BioRead or BioMap object in a single command using the
get method. For example, to retrieve both start positions and headers information of a BioMap
object, use the get method as follows:

multiProp = get(BMObjl, {'Start', 'Header'});

This syntax returns a cell array containing all start positions and headers information of a BioMap
object.

Note Property names are case sensitive.

For a list and description of all properties of a BioRead object, see BioRead class. For a list and
description of all properties of a BioMap object, see BioMap class.

Retrieve a Subset of Information from a BioRead or BioMap Object

Use specialized get methods with a numeric vector, logical vector, or cell array of headers to retrieve
a subset of information from an object. For example, to retrieve the first 10 elements from a BioRead
object, use the getSubset method:

newBRObj = getSubset(BRObjl, [1:10]);

This syntax returns a new BioRead object containing the first 10 elements in the original BioRead
object.

For example, to retrieve the first 12 positions of sequences with headers SRR005164.1,
SRR005164.7, and SRR005164.16, use the getSubsequence method:

subSeqs = getSubsequence(BRObj1l, ...
{'SRRO0O5164.1', 'SRRO05164.7', 'SRR005164.16'}, [1:12]"')
subSeqgs =
'"TGGCTTTAAAGC'
'CCCGAAAGCTAG'
"AATTTTGCGGCT'

For example, to retrieve information about the third element in a BioMap object, use the getInfo
method:

Info 3 = getInfo(BMObjl, 3);
This syntax returns a tab-delimited character vector containing this information for the third element:

* Sequence header

» SAM flags for the sequence

» Start position of the aligned read sequence with respect to the reference sequence
* Mapping quality score for the sequence

» Signature (CIGAR-formatted character vector) for the sequence

* Sequence

2-11

2 High-Throughput Sequence Analysis

2-12

* Quality scores for sequence positions

Note Method names are case sensitive.

For a complete list and description of methods of a BioRead object, see BioRead class. For a
complete list and description of methods of a BioMap object, see BioMap class.

Set Information in a BioRead or BioMap Object
Prerequisites

To modify properties (other than Name and Reference) of a BioRead or BioMap object, the data
must be in memory, and not indexed. To ensure the data is in memory, do one of the following:

* Construct the object from a structure as described in “Construct a BioMap Object from a SAM or
BAM Structure” on page 2-9.

* Construct the object from a source file using the InMemory name-value pair argument.

Provide Custom Headers for Sequences

First, create an object with the data in memory:

BRObj1l = BioRead('SRR005164 1 50.fastq', 'InMemory',true);

To provide custom headers for sequences of interest (in this case sequences 1 to 5), do the following:
BRObjl.Header(1:5) = {'H1', 'H2', 'H3', 'H4', 'H5'};

Alternatively, you can use the setHeader method:

BRObjl = setHeader(BRObj1l, {'Hl1', 'H2', 'H3', 'H4', 'H5'}, [1:51]);

Several other specialized set methods let you set the properties of a subset of elements in a
BioRead or BioMap object.

Note Method names are case sensitive.

For a complete list and description of methods of a BioRead object, see BioRead class. For a
complete list and description of methods of a BioMap object, see BioMap class.

Determine Coverage of a Reference Sequence

When working with a BioMap object, you can determine the number of read sequences that:
* Align within a specific region of the reference sequence

» Align to each position within a specific region of the reference sequence

For example, you can compute the number, indices, and start positions of the read sequences that
align within the first 25 positions of the reference sequence. To do so, use the getCounts,
getIndex, and getStart methods:

Cov = getCounts(BMObjl, 1, 25)

Manage Sequence Read Data in Objects

Cov =

12

Indices

getIndex(BMObjl, 1, 25)

Indices

CoNOOUA,WNR

10
11
12

startPos getStart(BMObjl, Indices)

startPos

1
3
5
6
9
13
13
15
18
22
22
24

The first two syntaxes return the number and indices of the read sequences that align within the
specified region of the reference sequence. The last syntax returns a vector containing the start

position of each aligned read sequence, corresponding to the position numbers of the reference

sequence.

For example, you can also compute the number of the read sequences that align to each of the first
10 positions of the reference sequence. For this computation, use the getBaseCoverage method:

Cov = getBaseCoverage(BMObjl, 1, 10)

Cov =

Construct Sequence Alignments to a Reference Sequence
It is useful to construct and view the alignment of the read sequences that align to a specific region of

the reference sequence. It is also helpful to know which read sequences align to this region in a
BioMap object.

2-13

2 High-Throughput Sequence Analysis

2-14

For example, to retrieve the alignment of read sequences to the first 12 positions of the reference
sequence in a BioMap object, use the getAlignment method:

[Alignment 1 12, Indices] = getAlignment(BMObj2, 1, 12)
Alignment 1 12 =
CACTAGTGGCTC
CTAGTGGCTC
AGTGGCTC

GTGGCTC
GCTC

Indices =

Uk WNR

Return the headers of the read sequences that align to a specific region of the reference sequence:
alignedHeaders = getHeader(BMObj2, Indices)

alignedHeaders

'B7 591:4:96:693:509'
"EAS54 65:7:152:368:113"
"EAS51 64:8:5:734:57"'
‘B7 591:1:289:587:906"
"EAS56 59:8:38:671:758"

Filter Read Sequences Using SAM Flags

SAM- and BAM-formatted files include the status of 11 binary flags for each read sequence. These
flags describe different sequencing and alignment aspects of a read sequence. For more information
on the flags, see the SAM Format Specification. The filterByFlag method lets you filter the read
sequences in a BioMap object by using these flags.

Filter Unmapped Read Sequences
1 Construct a BioMap object from a SAM-formatted file.

BMObj2 = BioMap('exl.sam');

2 Usethe filterByFlag method to create a logical vector indicating the read sequences in a
BioMap object that are mapped.
LogicalVec _mapped = filterByFlag(BMObj2, 'unmappedQuery', false);

3 Use this logical vector and the getSubset method to create a new BioMap object containing
only the mapped read sequences.

filteredBMObj 1 = getSubset(BMObj2, LogicalVec mapped);

https://samtools.github.io/hts-specs/SAMv1.pdf

Manage Sequence Read Data in Objects

Filter Read Sequences That Are Not Mapped in a Pair

1

Construct a BioMap object from a SAM-formatted file.

BMObj2 = BioMap('exl.sam');

Use the filterByFlag method to create a logical vector indicating the read sequences in a
BioMap object that are mapped in a proper pair, that is, both the read sequence and its mate are
mapped to the reference sequence.

LogicalVec paired = filterByFlag(BMObj2, 'pairedInMap', true);

Use this logical vector and the getSubset method to create a new BioMap object containing
only the read sequences that are mapped in a proper pair.

filteredBMObj 2 = getSubset(BMObj2, LogicalVec paired);

2-15

2 High-Throughput Sequence Analysis

Store and Manage Feature Annotations in Objects

2-16

In this section...

“Represent Feature Annotations in a GFFAnnotation or GTFAnnotation Object” on page 2-16
“Construct an Annotation Object” on page 2-16

“Retrieve General Information from an Annotation Object” on page 2-16

“Access Data in an Annotation Object” on page 2-17

“Use Feature Annotations with Sequence Read Data” on page 2-18

Represent Feature Annotations in a GFFAnnotation or GTFAnnotation
Object

The GFFAnnotation and GTFAnnotation objects represent a collection of feature annotations for
one or more reference sequences. You construct these objects from GFF (General Feature Format)
and GTF (Gene Transfer Format) files. Each element in the object represents a single annotation. The
properties and methods associated with the objects let you investigate and filter the data based on
reference sequence, a feature (such as CDS or exon), or a specific gene or transcript.

Construct an Annotation Object

Use the GFFAnnotation constructor function to construct a GFFAnnotation object from either a
GFF- or GTF-formatted file:

GFFAnnotObj = GFFAnnotation('tair8 1.gff')

GFFAnnotObj

GFFAnnotation with properties:

FieldNames: {1x9 cell}
NumEntries: 3331

Use the GTFAnnotation constructor function to construct a GTFAnnotation object from a GTF-
formatted file:

GTFAnnotObj GTFAnnotation('hum37_2 1M.gtf')

GTFAnnotObj

GTFAnnotation with properties:
FieldNames: {1x11 cell}
NumEntries: 308

Retrieve General Information from an Annotation Object

Determine the field names and the number of entries in an annotation object by accessing the
FieldNames and NumEntries properties. For example, to see the field names for each annotation
object constructed in the previous section, query the FieldNames property:

GFFAnnotObj.FieldNames

Store and Manage Feature Annotations in Objects

ans =
Columns 1 through 6
'Reference’ ‘Start’ 'Stop' 'Feature' ‘Source' ‘Score'
Columns 7 through 9
'Strand’ '"Frame' "Attributes’
GTFAnnotObj.FieldNames
ans =
Columns 1 through 6
'Reference’ 'Start' 'Stop" 'Feature' 'Gene’ 'Transcript’
Columns 7 through 11

'Source' 'Score' 'Strand'’ '"Frame' 'Attributes’

Determine the range of the reference sequences that are covered by feature annotations by using the
getRange method with the annotation object constructed in the previous section:

range

getRange (GFFAnnotObj)

range

3631 498516

Access Data in an Annotation Object
Create a Structure of the Annotation Data

Creating a structure of the annotation data lets you access the field values. Use the getData method
to create a structure containing a subset of the data in a GFFAnnotation object constructed in the
previous section.

% Extract annotations for positions 1 through 10000 of the
% reference sequence
AnnotStruct = getData(GFFAnnotObj,1,10000)

AnnotStruct

60x1 struct array with fields:

Reference

Start

Stop

Feature

Source

Score

Strand

Frame

Attributes

2-17

2 High-Throughput Sequence Analysis

2-18

Access Field Values in the Structure
Use dot indexing to access all or specific field values in a structure.

For example, extract the start positions for all annotations:

Starts = AnnotStruct.Start;

Extract the start positions for annotations 12 through 17. Notice that you must use square brackets
when indexing a range of positions:

Starts 12 17

[AnnotStruct(12:17).Start]

Starts 12 17
4706 5174 5174 5439 5439 5631
Extract the start position and the feature for the 12th annotation:
Start 12 = AnnotStruct(12).Start
Start 12 =
4706
Feature 12 = AnnotStruct(12).Feature
Feature 12 =

CDS

Use Feature Annotations with Sequence Read Data

Investigate the results of HTS sequencing experiments by using GFFAnnotation and
GTFAnnotation objects with BioMap objects. For example, you can:

» Determine counts of sequence reads aligned to regions of a reference sequence associated with
specific annotations, such as in RNA-Seq workflows.

* Find annotations within a specific range of a peak of interest in a reference sequence, such as in
ChIP-Seq workflows.

Determine Annotations of Interest

1 Construct a GTFAnnotation object from a GTF- formatted file:

GTFAnnotObj = GTFAnnotation('hum37_2 1M.gtf');

2 Use the getReferenceNames method to return the names for the reference sequences for the
annotation object:

refNames = getReferenceNames(GTFAnnotObj)

refNames

'chr2’
3 Use the getFeatureNames method to retrieve the feature names from the annotation object:

featureNames = getFeatureNames(GTFAnnotObj)

Store and Manage Feature Annotations in Objects

featureNames =

'CDS'
‘exon’
'start _codon'
'stop_codon'

4 Use the getGeneNames method to retrieve a list of the unique gene names from the annotation
object:

geneNames = getGeneNames (GTFAnnotObj)

geneNames

'uc02qvu.2’
'uc02qvv.2'
'uc02qvw. 2’
'uc002qvx.2'
'uc02qvy.2'
'uc002qvz.2'
'ucO02qwa.2’
'uc02qwb .2’
'ucl02qgqwc. 1’
'uc02qwd.2’
'uc02qgwe. 3"
'uc02qwf .2’
'uc002qwg.2'’
'uc002qwh .2’
'uc002gqwi.3"’
'uc002qwk.2'’
'uc002qwl.2’
'uc02qwm. 1’
'uc02qwn. 1’
'ucl02qgwo.1"
'uc02qwp.2'
'uc02qwq.2'
'uc0l0ewe.2'
'uc010ewf.1'
'uc010ewg.2'
'uc010ewh.1’
'uc010ewi.2'’
'uc010yim.1’

The previous steps gave us a list of available reference sequences, features, and genes associated
with the available annotations. Use this information to determine annotations of interest. For
instance, you might be interested only in annotations that are exons associated with the uc002qvv.2
gene on chromosome 2.

Filter Annotations

Use the getData method to filter the annotations and create a structure containing only the
annotations of interest, which are annotations that are exons associated with the uc002qvv.2 gene on
chromosome 2.

AnnotStruct = getData(GTFAnnotObj, 'Reference', 'chr2',...
'Feature', 'exon', 'Gene', 'ucf02qvv.2")

AnnotStruct

2-19

2 High-Throughput Sequence Analysis

2-20

12x1 struct array with fields:

Reference
Start

Stop
Feature
Gene
Transcript
Source
Score
Strand
Frame
Attributes

The return structure contains 12 elements, indicating there are 12 annotations that meet your filter
criteria.

Extract Position Ranges for Annotations of Interest

After filtering the data to include only annotations that are exons associated with the uc002qvv.2
gene on chromosome 2, use the Start and Stop fields to create vectors of the start and end positions
for the ranges associated with the 12 annotations.

StartPos = [AnnotStruct.Start];
EndPos = [AnnotStruct.Stopl;

Determine Counts of Sequence Reads Aligned to Annotations

Construct a BioMap object from a BAM-formatted file containing sequence read data aligned to
chromosome 2.

BMObj3 = BioMap('ex3.bam');

Then use the range for the annotations of interest as input to the getCounts method of a BioMap
object. This returns the counts of short reads aligned to the annotations of interest.

counts = getCounts(BMObj3,StartPos,EndPos, 'independent', true)
counts =
1399
54
221

97
125

65

12

Bioinformatics Toolbox Software Support Packages

Bioinformatics Toolbox Software Support Packages

Bioinformatics Toolbox provides support packages for various next-generation sequencing workflows
and analyses. To make a support package available in your MATLAB command line, you must first
install it.

Install Support Package

Follow these steps to install a support package.

1 In the Environment section of the MATLAB toolstrip, select Add-Ons > Get Add-Ons.

2 In the Add-On Explorer, search for the support package that you want to install by entering its
name.

3 Install the support package.

For details about installing add-ons, see “Get and Manage Add-Ons”. For other information, see “Add-
Ons”.

Available Support Packages

The following table lists all the Bioinformatics Toolbox support packages that are available for
download as Add-Ons.

Support Package Name Version' |Corresponding MATLAB functions Supporte
d 0S
Bowtie 2 Support Package for |2.3.2 bowtie2, bowtie2build, bowtie2inspect. |Windows
Bioinformatics Toolbox [1] ®* Mac,
(download link) and
UNIX®
Cufflinks Support Package for |2.2.1 cufflinks, cuffcompare, cuffdiff, Windows*
the Bioinformatics Toolbox [2] cuffgffread, cuffgtf2sam, cuffmerge, , Mac,
(download link) cuffnorm, cuffquant. and UNIX
BWA Support Package for 0.7.17 |bwaindex, bwamem. Windows#
Bioinformatics Toolbox [3][4] , Mac,
(download link) and UNIX

fVersion of the original (third-party) software

*You need to install Windows Subsystem for Linux (WSL) and a Linux distribution on your Windows
machine. For details on installing WSL, see here.

See Also

More About

. “Count Features from NGS Reads” on page 2-23
. “High-Throughput Sequencing”

2-21

https://www.mathworks.com/matlabcentral/fileexchange/105425-bowtie-2-support-package-for-bioinformatics-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/69674-cufflinks-support-package-for-the-bioinformatics-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/80236-bwa-support-package-for-bioinformatics-toolbox
https://docs.microsoft.com/windows/wsl/

2 High-Throughput Sequence Analysis

2-22

References

[1] Langmead, Ben, and Steven L Salzberg. “Fast Gapped-Read Alignment with Bowtie 2.” Nature
Methods 9, no. 4 (April 2012): 357-59. https://doi.org/10.1038/nmeth.1923.

[2] Trapnell, Cole, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke] van Baren,
Steven L Salzberg, Barbara] Wold, and Lior Pachter. “Transcript Assembly and Quantification
by RNA-Seq Reveals Unannotated Transcripts and Isoform Switching during Cell
Differentiation.” Nature Biotechnology 28, no. 5 (May 2010): 511-15.

[3]1 Li, Heng, and Richard Durbin. “Fast and Accurate Long-Read Alignment with Burrows-Wheeler
Transform.” Bioinformatics 26, no. 5 (March 1, 2010): 589-95. https://doi.org/10.1093/
bioinformatics/btp698.

[4] Li, Heng, and Richard Durbin. “Fast and Accurate Short Read Alignment with Burrows-Wheeler
Transform.” Bioinformatics 25, no. 14 (July 15, 2009): 1754-60. https://doi.org/10.1093/
bioinformatics/btp324.

https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324

Count Features from NGS Reads

Count Features from NGS Reads

This example shows how to count features from paired-end sequencing reads after aligning them to
the whole human genome curated by the Genome Reference Consortium. This example uses Genome
Reference Consortium Human Build 38 patch release 12 (GRCh38.p12) as the human genome
reference.

Prerequisites and Data Set

This example works on the UNIX® and Mac platforms only. Download the Bioinformatics Toolbox™
Interface for Bowtie Aligner support package from the Add-On Explorer. For details, see
“Bioinformatics Toolbox Software Support Packages” on page 2-21.

This example assumes you have:

* Downloaded and extracted the RefSeq assembly from Genome Reference Consortium Human
Build 38 patch release 12 (GRCh38.p12).

* Downloaded and organized some paired-end reads data. This example uses the exome sequencing
data from the 1000 genomes project. Paired-end reads are indicated by ' 1' and ' 2' in the
filenames.

Build Index

Construct an index for aligning reads to the reference using bowtie2build. The file
GCF_000001405.38 GRCh38.pl2 genomic.fna contains the human reference genome in the
FASTA format. bowtieIdx is the base name of the reference index files. The ' --threads 8' option
specifies the number of parallel threads to build index files faster. You do not need to specify full file
paths for *.fna or *.index files if you are running the example from the same folder location. Specify
the full paths if you wish to store the files elsewhere or run the example from a different folder.

bowtieIdx
buildFlag

'GCF_000001405.38 GRCh38.pl12 genomic.index';
bowtie2build('GCF 000001405.38 GRCh38.pl2 genomic.fna',...
bowtieIdx, '--threads 8');

Align Reads to Reference

Align paired-end reads to the reference using bowtie2. You can create a Bowtie2AlignOptions
object to specify different options, such as the number of parallel threads to use.

opt = Bowtie2AlignOptions;
opt.NumThreads = 8;

readsl = 'HGO0096 1.fastq';
reads2 = 'HGO0096 2.fastq';

bowtie2 (bowtieldx, readsl, reads2, 'HGOOO96.sam',opt);

Selectively Align to Gene of Interest

SAM files can be very large. Use BioMap to select only the data for the correct reference. For this
example, consider APOE, which is a gene on Chromosome 19 linked to Alzheimer's disease. Create a
smaller BAM file for APOE to improve performance.

apoeRef 'NC_000019.10'; % Reference name for Chromosome 19 in HG38
bm BioMap('HGOO096.sam', 'SelectReference',apoeRef);
write(bm, 'HGOOO96.bam', 'Format', 'bam');

2-23

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38
https://www.internationalgenome.org/data-portal/sample

2 High-Throughput Sequence Analysis

2-24

Warning: Found invalid tag in header type: 'PG'. Ignoring tag 'PN:bowtie2'.
Warning: The read sequences in input SAM file do not appear to be ordered
according to the start position of their alignments with the reference
sequence. Because of this, there will be a decrease in performance when
accessing the reads. For maximum performance, order the read sequences in the
SAM file, before creating a BioMap object.

Summarize Read Counts

Use featurecount to compare the number of transcripts for each APOE variant using a GTF file. A
full table of features is included in the GRCh38.p12 assembly in GFF format, which can be converted
to GTF using cuffgffread. This example uses a simplified GTF based on APOE transcripts.
APOE_gene.gtf is included with the software.

[FeatTable, Summary] = featurecount('APOE gene.gtf', 'HGOO096.bam',...
'Metafeature', 'transcript id');

Processing GTF file APOE gene.gtf ...
Processing BAM file HGOOO96.bam ...
Processing reference NC 000019.10 ...
10000 reads processed ...
20000 reads processed
30000 reads processed
40000 reads processed
50000 reads processed
60000 reads processed
70000 reads processed
80000 reads processed
90000 reads processed ...
100000 reads processed ...
110000 reads processed ...
120000 reads processed ...
130000 reads processed ...
140000 reads processed ...
150000 reads processed ...
160000 reads processed ...
170000 reads processed ...
180000 reads processed ...
190000 reads processed ...
200000 reads processed ...
210000 reads processed ...
220000 reads processed ...
230000 reads processed ...
240000 reads processed ...
250000 reads processed ...
260000 reads processed ...
270000 reads processed ...
280000 reads processed ...
290000 reads processed ...
300000 reads processed ...
310000 reads processed ...
320000 reads processed ...
330000 reads processed ...
340000 reads processed ...
350000 reads processed ...
360000 reads processed ...
370000 reads processed ...
380000 reads processed ...

Count Features from NGS Reads

390000
400000
410000
420000
430000
440000
450000
460000
470000
480000
490000
500000
510000
520000
530000
540000
550000
560000
570000
580000
590000
600000
610000
620000
630000
640000
650000
660000
670000
680000
690000
700000
710000
720000
730000
740000
750000
760000
770000
780000
790000
800000
810000
820000
830000
840000
850000
860000
870000
880000
890000
900000
910000
920000
930000
940000
950000
960000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

2-25

2 High-Throughput Sequence Analysis

2-26

970000 reads processed ...

980000 reads processed ...

990000 reads processed ...

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

1000000
1010000
1020000
1030000
1040000
1050000
1060000
1070000
1080000
1090000
1100000
1110000
1120000
1130000
1140000
1150000
1160000
1170000
1180000
1190000
1200000
1210000
1220000
1230000
1240000
1250000
1260000
1270000
1280000
1290000
1300000
1310000
1320000
1330000
1340000
1350000
1360000
1370000
1380000
1390000
1400000
1410000
1420000
1430000
1440000
1450000
1460000
1470000
1480000
1490000
1500000
1510000
1520000
1530000
1540000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

Count Features from NGS Reads

1550000
1560000
1570000
1580000
1590000
1600000
1610000
1620000
1630000
1640000
1650000
1660000
1670000
1680000
1690000
1700000
1710000
1720000
1730000
1740000
1750000
1760000
1770000
1780000
1790000
1800000
1810000
1820000
1830000
1840000
1850000
1860000
1870000
1880000
1890000
1900000
1910000
1920000
1930000
1940000
1950000
1960000
1970000
1980000
1990000
2000000
2010000
2020000
2030000
2040000
2050000
2060000
2070000
2080000
2090000
2100000
2110000
2120000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

2-27

2 High-Throughput Sequence Analysis

2-28

2130000
2140000
2150000
2160000
2170000
2180000
2190000
2200000
2210000
2220000
2230000
2240000
2250000
2260000
2270000
2280000
2290000
2300000
2310000
2320000
2330000
2340000
2350000
2360000
2370000
2380000
2390000
2400000
2410000
2420000
2430000
2440000
2450000
2460000
2470000
2480000
2490000
2500000
2510000
2520000
2530000
2540000
2550000
2560000
2570000
2580000
2590000
2600000
2610000
2620000
2630000
2640000
2650000
2660000
2670000
2680000
2690000
2700000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

Count Features from NGS Reads

2710000
2720000
2730000
2740000
2750000
2760000
2770000
2780000
2790000
2800000
2810000
2820000
2830000
2840000
2850000
2860000
2870000
2880000
2890000
2900000
2910000
2920000
2930000
2940000
2950000
2960000
2970000
2980000
2990000
3000000
3010000
3020000
3030000
3040000
3050000
3060000
3070000
3080000
3090000
3100000
3110000
3120000
3130000
3140000
3150000
3160000
3170000
3180000
3190000
3200000
3210000
3220000
3230000
3240000
3250000
3260000
3270000
3280000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

2-29

2 High-Throughput Sequence Analysis

2-30

3290000
3300000
3310000
3320000
3330000
3340000
3350000
3360000
3370000
3380000
3390000
3400000
3410000
3420000
3430000
3440000
3450000
3460000
3470000
3480000
3490000
3500000
3510000
3520000
3530000
3540000
3550000
3560000
3570000
3580000
3590000
3600000
3610000
3620000
3630000
3640000
3650000
3660000
3670000
3680000
3690000
3700000
3710000
3720000
3730000
3740000
3750000
3760000
3770000
3780000
3790000
3800000
3810000
3820000
3830000
3840000
3850000
3860000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

Count Features from NGS Reads

3870000
3880000
3890000
3900000
3910000
3920000
3930000
3940000
3950000
3960000
3970000
Done.

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

See Also
bamsort | samsort | bwamem | bowtie2 | bowtie2build | featurecount | BioMap |

cuffgffread | cufflinks

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

2-31

2 High-Throughput Sequence Analysis

Identifying Differentially Expressed Genes from RNA-Seq Data

2-32

This example shows how to test RNA-Seq data for differentially expressed genes using a negative
binomial model.

Introduction

A typical differential expression analysis of RNA-Seq data consists of normalizing the raw counts and
performing statistical tests to reject or accept the null hypothesis that two groups of samples show no
significant difference in gene expression. This example shows how to inspect the basic statistics of
raw count data, how to determine size factors for count normalization and how to infer the most
differentially expressed genes using a negative binomial model.

The dataset for this example comprises of RNA-Seq data obtained in the experiment described by
Brooks et al. [1]. The authors investigated the effect of siRNA knock-down of pasilla, a gene known to
play an important role in the regulation of splicing in Drosophila melanogaster. The dataset consists
of 2 biological replicates of the control (untreated) samples and 2 biological replicates of the knock-
down (treated) samples.

Inspecting Read Count Tables for Genomic Features

The starting point for this analysis of RNA-Seq data is a count matrix, where the rows correspond to
genomic features of interest, the columns correspond to the given samples and the values represent
the number of reads mapped to each feature in a given sample.

The included file pasilla count noMM.mat contains two tables with the count matrices at the
gene level and at the exon level for each of the considered samples. You can obtain similar matrices
using the function featurecount.

load pasilla count noMM.mat

% preview the table of read counts for genes

head(geneCountTable)

ID Reference untreated3 untreated4 treated2 treated3
"FBgn0000003" "3R" 0 1 1 2
"FBgn0000008" "2R" 142 117 138 132
"FBgn0000014" "3R" 20 12 10 19
"FBgn0000015" "3R" 2 4 0 1
"FBgn0000017" "3L" 6591 5127 4809 6027
"FBgn0000018" "2L" 469 530 492 574
"FBgn0000024" "3R" 5 6 10 8
"FBgn0000028" X 0 0 2 1

Note that when counting is performed without summarization, the individual features (exons in this
case) are reported with their metafeature assignment (genes in this case) followed by the start and
stop positions.

% preview the table of read counts for exons
head (exonCountTable)

ID Reference untreated3 untreated4 treated?

trea

Identifying Differentially Expressed Genes from RNA-Seq Data

"FBgn0000003_ 2648220 2648518" "3R" 0 0 0
“"FBgn0000008_ 18024938 18025756" "2R" 0 1 0
“FBgn0000008_18050410_18051199" "2R" 13 9 14
"FBgn0000008_ 18052282 18052494" "2R" 4 2 5
“"FBgn00O000O8_18056749 18058222" "2R" 32 27 26
“"FBgn00O000O8_ 18058283 18059490" "2R" 14 18 29
“"FBgn0O000O8_ 18059587 18059757" "2R" 1 4 3
“FBgn00O000O8_18059821 18059938" "2R" 0 0 2

You can annotate and group the samples by creating a logical vector as follows:
samples = geneCountTable(:,3:end).Properties.VariableNames;
untreated = strncmp(samples, 'untreated',length('untreated"'))
treated = strncmp(samples, 'treated',length('treated'))

untreated =

1x4 logical array

1 1 0 ©

treated =
1x4 logical array

0 0 1 1

Plotting the Feature Assignments

The included file also contains a table geneSummaryTable with the summary of assigned and
unassigned SAM entries. You can plot the basic distribution of the counting results by considering the
number of reads that are assigned to the given genomic features (exons or genes for this example), as
well as the number of reads that are unassigned (i.e. not overlapping any feature) or ambiguous (i.e.
overlapping multiple features).

st = geneSummaryTable({'Assigned', 'Unassigned ambiguous', 'Unassigned noFeature'},:)
bar(table2array(st)', 'stacked');
legend(st.Properties.RowNames', 'Interpreter', 'none', 'Location', 'southeast');
xlabel('Sample')
ylabel('Number of reads')
st =

3x4 table

untreated3 untreated4 treated2 treated3

Assigned 1.5457e+07 1.6302e+07 1.5146e+07 1.8856e+07
Unassigned ambiguous 1.5708e+05 1.6882e+05 1.6194e+05 1.9977e+05
Unassigned noFeature 7.5455e+05 5.8309e+05 5.8756e+05 6.8356e+05

2-33

2 High-Throughput Sequence Analysis

2-34

Mumber of reads

0.8r J

0.6 J

0.4 J
N - ssigned

0D.2r I Unassigned_ambiguous |
[Unassigned noFeature

Sample

Note that a small fraction of the alignment records in the SAM files is not reported in the summary
table. You can notice this in the difference between the total number of records in a SAM file and the
total number of records processed during the counting procedure for that same SAM file. These
unreported records correspond to the records mapped to reference sequences that are not annotated
in the GTF file and therefore are not processed in the counting procedure. If the gene models account
for all the reference sequences used during the read mapping step, then all records are reported in
one of the categories of the summary table.

geneSummaryTable{'TotalEntries',:} - sum(geneSummaryTable{2:end,:})

ans =

89516 95885 98207 104629

Plotting Read Coverage Across a Given Chromosome

When read counting is performed without summarization using the function featurecount, the
default IDs are composed by the attribute or metafeature (by default, gene id) followed by the start
and the stop positions of the feature (by default, exon). You can use the exon start positions to plot
the read coverage across any chromosome in consideration, for example chromosome arm 2L.

% consider chromosome arm 2L
chr2L = strcmp(exonCountTable.Reference, '2L");
exonCount = exonCountTable{:,3:end};

Identifying Differentially Expressed Genes from RNA-Seq Data

% retrieve exon start positions

exonStart = regexp(exonCountTable{chr2L,1},"' (\d+) ', 'tokens');
exonStart = [exonStart{:}];
exonStart = cellfun(@str2num, [exonStart{:}]1');

% sort exon by start positions
[~,1dx] = sort(exonStart);

% plot read coverage along the genomic coordinates
figure;
plot(exonStart(idx),exonCount(idx,treated),'.-r',...
exonStart(idx),exonCount(idx,untreated),'.-b');
xlabel('Genomic position');

ylabel('Read count (exon level)');

title('Read count on Chromosome arm 2L');

% plot read coverage for each group separately
figure;

subplot(2,1,1);
plot(exonStart(idx),exonCount(idx,untreated),'.-r');
ylabel('Read count (exon level)');
title('Chromosome arm 2L (treated samples)');
subplot(2,1,2);
plot(exonStart(idx),exonCount(idx,treated),'.-b");
ylabel('Read count (exon level)');

xlabel('Genomic position');

title('Chromosome arm 2L (untreated samples)');

w104 Read count on Chromosome arm 2L
'Eln T T T T

.
T
1

RFead count (exon level)
2 L
T

0 0.5 1 15 2 2.5
Genomic position x107

2-35

2 High-Throughput Sequence Analysis

2-36

g X 10* Chromosome arm 2L {treated samples)
E T T T T
o
S 4
8
g
92
E
[a}]
&
0 0.5 1 1.5 2 2.5
%107
<104 Chromosome arm 2L {untreated samples)
%ﬁ P T T T T
3
S 4
g
g
32 1
E
[a}]
& g
0 0.5 1 1.2 2 2.5
Genomic position win”

Alternatively, you can plot the read coverage considering the starting position of each gene in a given
chromosome. The file pasilla genelLength.mat contains a table with the start and stop position of
each gene in the corresponding gene annotation file.

% load gene start and stop position information
load pasilla genelLength

head(geneLength)

ID Name Reference Start Stop
"FBgn0037213" "CG12581" 3R 380 10200
"FBgn0000500" "Dsk" 3R 15388 16170
"FBgn0053294" "CR33294" 3R 17136 21871
"FBgn0037215" "CG12582" 3R 23029 30295
"FBgn0037217" "CG14636" 3R 30207 41033
"FBgn0037218" "aux" 3R 37505 53244
"FBgn0051516" "CG31516" 3R 44179 45852
"FBgn0261436" "DhpD" 3R 53106 54971

[)

% consider chromosome 3 ('Reference' is a categorical variable)
chr3 = (geneLength.Reference == '3L') | (geneLength.Reference == '3R');
sum(chr3)

% consider the counts for genes in chromosome 3
counts = geneCountTable{:,3:end};
[~,3,k] = intersect(geneCountTable{:, 'ID'},geneLength{chr3,'ID'});

Identifying Differentially Expressed Genes from RNA-Seq Data

gstart = geneLength{k, 'Start'};
gcounts = counts(j,:);

% sort according to ascending start position
[~,idx] = sort(gstart);

% plot read coverage by genomic position

figure;

plot(gstart(idx), gcounts(idx,treated),'.-r',...
gstart(idx), gcounts(idx,untreated),'.-b");

xlabel('Genomic position')

ylabel('Read count');

title('Read count on Chromosome 3');

ans =

6360

+ 104 Read count on Chromosome 3

15 T T T T

16

14 r

Read count

1] 0.5 1 1.5 2
Genomic position

Normalizing Read Counts

The read count in RNA-Seq data has been found to be linearly related to the abundance of transcripts
[2]. However, the read count for a given gene depends not only on the expression level of the gene,
but also on the total number of reads sequenced and the length of the gene transcript. Therefore, in
order to infer the expression level of a gene from the read count, we need to account for the
sequencing depth and the gene transcript length. One common technique to normalize the read count

2 High-Throughput Sequence Analysis

2-38

is to use the RPKM (Read Per Kilobase Mapped) values, where the read count is normalized by the
total number of reads yielded (in millions) and the length of each transcript (in kilobases). This
normalization technique, however, is not always effective since few, very highly expressed genes can
dominate the total lane count and skew the expression analysis.

A better normalization technique consists of computing the effective library size by considering a size
factor for each sample. By dividing each sample's counts by the corresponding size factors, we bring
all the count values to a common scale, making them comparable. Intuitively, if sample A is
sequenced N times deeper than sample B, the read counts of non-differentially expressed genes are
expected to be on average N times higher in sample A than in sample B, even if there is no difference
in expression.

To estimate the size factors, take the median of the ratios of observed counts to those of a pseudo-
reference sample, whose counts can be obtained by considering the geometric mean of each gene
across all samples [3]. Then, to transform the observed counts to a common scale, divide the
observed counts in each sample by the corresponding size factor.

% estimate pseudo-reference with geometric mean row by row
pseudoRefSample = geomean(counts,2);

nz = pseudoRefSample > 0;

ratios = bsxfun(@rdivide, counts(nz, :),pseudoRefSample(nz));
sizeFactors = median(ratios,1)

sizeFactors =
0.9374 0.9725 0.9388 1.1789
% transform to common scale

normCounts = bsxfun(@rdivide, counts,sizeFactors);
normCounts(1:10,:)

ans =
1.0e+03 *

0 0.0010 0.0011 0.0017
0.1515 0.1203 0.1470 0.1120
0.0213 0.0123 0.0107 0.0161
0.0021 0.0041 0 0.0008
7.0315 5.2721 5.1225 5.1124
0.5003 0.5450 0.5241 0.4869
0.0053 0.0062 0.0107 0.0068

0 0 0.0021 0.0008
1.2375 1.1753 1.2122 1.2003

0 0 0 0.0008

You can appreciate the effect of this normalization by using the function boxplot to represent
statistical measures such as median, quartiles, minimum and maximum.

figure;

subplot(2,1,1)
maboxplot(log2(counts), 'title', 'Raw Read Count', 'orientation', 'horizontal')

Identifying Differentially Expressed Genes from RNA-Seq Data

ylabel('sample')
xlabel('log2(counts)"')

subplot(2,1,2)

maboxplot(log2(normCounts), 'title', 'Normalized Read Count', 'orientation', 'horizontal')
ylabel('sample')

xlabel('log2(counts)"')

Raw Read Count

4r ———- [F-———————— I
[al] | —_ = e e e e i
Lar + { | - l
£
So2r =——{ | F-—-——-—-———— I

| | F-—————————- I

0 2 4 <] B 10 12 14 16 18

logZ{counts)

Mormalized Read Count

4F == | e 1
[al]
23F F——1 | F————————- — -
=
Dor ———{ | F—————————= .
1 | F—————————— I
0 2 4 6 8 10 12 14 16 18

log2icounts)

Computing Mean, Dispersion and Fold Change

In order to better characterize the data, we consider the mean and the dispersion of the normalized
counts. The variance of read counts is given by the sum of two terms: the variation across samples
(raw variance) and the uncertainty of measuring the expression by counting reads (shot noise or
Poisson). The raw variance term dominates for highly expressed genes, whereas the shot noise
dominates for lowly expressed genes. You can plot the empirical dispersion values against the mean
of the normalized counts in a log scale as shown below.

% consider the mean
meanTreated = mean(normCounts(:,treated),2);
meanUntreated = mean(normCounts(:,untreated),?2);

% consider the dispersion

dispTreated = std(normCounts(:,treated),0,2) ./ meanTreated;
dispUntreated = std(normCounts(:,untreated),0,2) ./ meanUntreated;
% plot on a log-log scale

figure;

2-39

2 High-Throughput Sequence Analysis

2-40

loglog(meanTreated,dispTreated, 'r.");

hold on;

loglog(meanUntreated,dispUntreated, 'b.");
xlabel('log2(Mean)"');

ylabel('log2(Dispersion)"');
legend('Treated', 'Untreated', 'Location', 'southwest');

log2({Dispersion)

. Treated . - .
. Untreated
10° 102 10* 108
log2(Mean)

Given the small number of replicates, it is not surprising to expect that the dispersion values scatter
with some variance around the true value. Some of this variance reflects sampling variance and some
reflects the true variability among the gene expressions of the samples.

You can look at the difference of the gene expression among two conditions, by calculating the fold
change (FC) for each gene, i.e. the ratio between the counts in the treated group over the counts in
the untreated group. Generally these ratios are considered in the log2 scale, so that any change is
symmetric with respect to zero (e.g. a ratio of 1/2 or 2/1 corresponds to -1 or +1 in the log scale).

% compute the mean and the log2FC

meanBase = (meanTreated + meanUntreated) / 2;
foldChange = meanTreated ./ meanUntreated;
log2FC = log2(foldChange);

% plot mean vs. fold change (MA plot)

mairplot(meanTreated, meanUntreated, 'Type', 'MA','Plotonly', true);
set(get(gca, 'Xlabel'), 'String', 'mean of normalized counts')
set(get(gca, 'Ylabel'), 'String', 'log2(fold change)"')

Warning: Zero values are ignored

Identifying Differentially Expressed Genes from RNA-Seq Data

log2(fold change)

A r .

o 2 4 6 8 10 12 14 16 18

mean of normalized counts

It is possible to annotate the values in the plot with the corresponding gene names, interactively
select genes, and export gene lists to the workspace by calling the mairplot function as illustrated

below:
mairplot(meanTreated,meanUntreated, 'Labels',geneCountTable.ID, 'Type', 'MA");

Warning: Zero values are ignored

2-41

2 High-Throughput Sequence Analysis

Mormalize

|:| Showw smoath curve

Lp Regulsted Genes

FEgn000000:3 ~
FEgn0000044
1= g et s e e P g e FEQn0000045
FEgn0000071
FEgn0000116
FEgn0000287
FEgn0000S00
FEn0000659
= FEgnoont 224
T e = L S R - g e R R T PE PR FEgno001 225
FEgn0o01 226
FEgn0001229
FEQnoo01 254
FEond001 313 N

Dowen Regulated Genes

FEgn0000015 A
FEgnO000061
4T 1 | [FEgnoooooTs
FEign0000074
FEgn0000099
rat 1 FEgn0000408
FEgnO000SE7
: : : : : : : : : : FEgnO000S77
0 2 4 6 8 10 12 14 16 18 FEgni000534
A FEgn000 137
FEgn000 150
FEgn0001 235
FEgnO00 253
FEcn0001 967 >

Threshald

Showy factor lines

Fold change 2 Update Reset Export... Clear

It is convenient to store the information about the mean value and fold change for each gene in a
table. You can then access information about a given gene or a group of genes satisfying specific
criteria by indexing the table by gene names.

% create table with statistics about each gene
geneTable = table(meanBase,meanTreated,meanUntreated, foldChange, log2FC);
geneTable.Properties.RowNames = geneCountTable.ID;

% summary
summary (geneTable)

2-42

Identifying Differentially Expressed Genes from RNA-Seq Data

Variables:

meanBase: 11609x1 double

Values:
Min 0.21206
Median 201.24
Max 2.6789e+05

meanTreated: 11609x1 double

Values:
Min 0
Median 201.54
Max 2.5676e+05

meanUntreated: 11609x1 double

Values:
Min 0
Median 199.44
Max 2.7903e+05

foldChange: 11609x1 double

Values:
Min 0
Median 0.99903
Max Inf

log2FC: 11609x1 double

Values:
Min -Inf
Median -0.001406
Max Inf

% preview

head(geneTable)
meanBase meanTreated meanUntreated foldChange log2FC
FBgn0000003 0.9475 1.3808 0.51415 2.6857 1.4253
FBgn0000008 132.69 129.48 135.9 0.95277 -0.069799
FBgn0000014 15.111 13.384 16.838 0.79488 -0.33119
FBgn0000015 1.7738 0.42413 3.1234 0.13579 -2.8806
FBgn@OEOEO17 5634.6 5117.4 6151.8 0.83186 -0.26559
FBgn0000018 514.08 505.48 522.67 0.96711 -0.048243
FBgn0000O024 7.2354 8.7189 5.752 1.5158 0.60009

2-43

2 High-Throughput Sequence Analysis

2-44

FBgn0000028 0.74465 1.4893 0 Inf Inf
% access information about a specific gene
myGene = 'FBgn0261570";
geneTable(myGene, :)
geneTable(myGene, { 'meanBase', 'log2FC'})
% access information about a given gene list
myGeneSet = ["FBgn0261570","FBgn0261573", "FBgn0261575", "FBgn0261560"1];
geneTable(myGeneSet, :)
ans =
1x5 table
meanBase meanTreated meanUntreated foldChange log2FC
FBgn0261570 4435.5 4939.1 3931.8 1.2562 0.32907
ans =
1x2 table
meanBase log2FC
FBgn0261570 4435.5 0.32907
ans =
4x5 table
meanBase meanTreated meanUntreated foldChange log2FC
FBgn0261570 4435.5 4939.1 3931.8 1.2562 0.32907
FBgn0261573 2936.9 2954.8 2919.1 1.0122 0.01753
FBgn0261575 4.3776 5.6318 3.1234 1.8031 0.85047
FBgn0261560 2041.1 1494.3 2588 0.57738 -0.7924

Inferring Differential Expression with a Negative Binomial Model

Determining whether the gene expressions in two conditions are statistically different consists of
rejecting the null hypothesis that the two data samples come from distributions with equal means.
This analysis assumes the read counts are modeled according to a negative binomial distribution (as
proposed in [3]). The function rnaseqde performs this type of hypothesis testing with three possible

options to specify the type of linkage between the variance and the mean.

By specifying the link between variance and mean as an identity, we assume the variance is equal to
the mean, and the counts are modeled by the Poisson distribution [4]. "IDColumns" specifies columns

from the input table to append to the output table to help keep data organized.

Identifying Differentially Expressed Genes from RNA-Seq Data

diffTableIdentity = rnaseqde(geneCountTable, ["untreated3","untreated4"],["treated2","treated3"],"

% Preview the results.
head(diffTableldentity)

ID Meanl Mean2 Log2FoldChange PValue AdjustedPValue
"FBgn0000003" 0.51415 1.3808 1.4253 0.627 0.75892
"FBgn0000008" 135.9 129.48 -0.069799 0.48628 0.64516
"FBgn0000014" 16.838 13.384 -0.33119 0.44445 0.61806
"FBgn0000015" 3.1234 0.42413 -2.8806 0.05835 0.12584
"FBgn0000017" 6151.8 5117.4 -0.26559 2.864e-42 6.0233e-41
"FBgn0000018" 522.67 505.48 -0.048243 0.39015 0.5616
"FBgn0000024" 5.752 8.7189 0.60009 0.35511 0.52203
"FBgn0000028" 0 1.4893 Inf 0.252 0.39867

Alternatively, by specifying the variance as the sum of the shot noise term (i.e. mean) and a constant
multiplied by the squared mean, the counts are modeled according to a distribution described in [5].
The constant term is estimated using all the rows in the data.

diffTableConstant = rnaseqde(geneCountTable, ["untreated3","untreated4"], ["treated2","treated3"],

% Preview the results.
head(diffTableConstant)

ID Meanl Mean2 Log2FoldChange Pvalue AdjustedPValue
"FBgn0000003" 0.51415 1.3808 1.4253 0.62769 0.7944
"FBgn0000008" 135.9 129.48 -0.069799 0.53367 0.72053
"FBgn0000014" 16.838 13.384 -0.33119 0.45592 0.68454
"FBgn0000015" 3.1234 0.42413 -2.8806 0.058924 0.16938
"FBgn00000O17" 6151.8 5117.4 -0.26559 8.5529e-05 0.00077269
"FBgn0000018" 522.67 505.48 -0.048243 0.54834 0.73346
"FBgn0000024" 5.752 8.7189 0.60009 0.36131 0.58937
"FBgn0000028" 0 1.4893 Inf 0.2527 0.46047

Finally, by considering the variance as the sum of the shot noise term (i.e. mean) and a locally
regressed non-parametric smooth function of the mean, the counts are modeled according to the
distribution proposed in [3].

diffTablelLocal = rnaseqde(geneCountTable, ["untreated3","untreated4"],["treated2", "treated3"],Va

% Preview the results.

head(diffTablelLocal)

ID Meanl Mean2 Log2FoldChange PValue AdjustedPValue
"FBgn0000003" 0.51415 1.3808 1.4253 1 1
"FBgn0000008" 135.9 129.48 -0.069799 0.67298 0.89231
"FBgn0000014" 16.838 13.384 -0.33119 0.6421 0.87234
"FBgn00000O15" 3.1234 0.42413 -2.8806 0.22776 0.57215
"FBgn00000O17" 6151.8 5117.4 -0.26559 0.0014429 0.014207
"FBgn0000018" 522.67 505.48 -0.048243 0.65307 0.88136

2-45

2 High-Throughput Sequence Analysis

“"FBgn0000024" 5.752 8.7189 0.60009 0.55154 0.81984
“FBgn0000028" 0 1.4893 Inf 0.42929 0.7765

The output of rnaseqde includes a vector of P-values. A P-value indicates the probability that a
change in expression as strong as the one observed (or even stronger) would occur under the null
hypothesis, i.e. the conditions have no effect on gene expression. In the histogram of the P-values we
observe an enrichment of low values (due to differentially expressed genes), whereas other values are
uniformly spread (due to non-differentially expressed genes). The enrichment of values equal to 1 are
due to genes with very low counts.

figure;
histogram(diffTableLocal.PValue, 100)
xlabel('P-value")
ylabel('Frequency')

title('P-value enrichment')

P-value enrichment
'1 H-DD T T T T T T T T T T T

1600 b

1400 | -

1200 7

Frequency
=
=
o

T

800 7

600 7

400 7

2001 T

0 0 02 03 04 05 06 07 08 09 1
P-value

Filter out those genes with relatively low count to observe a more uniform spread of non-significant P-
values across the range (0,1]. Note that this does not affect the distribution of significant P-values.

lowCountThreshold = 10;

lowCountGenes = all(counts < lowCountThreshold, 2);
histogram(diffTableLocal.PValue(~lowCountGenes),b 100)
xlabel('P-value')

ylabel('Frequency')

title('P-value enrichment without low count genes')

2-46

Identifying Differentially Expressed Genes from RNA-Seq Data

P-value enrichment without low count genes
'1 E.DD T T T T T T T T T T T

1600]

1400 [1

1200]

b
2
2
=]
T
i

800]

Frequency

600]

400]

2001]

W] 04 02 03 04 05 06 07 08 09 1
P-value

Multiple Testing and Adjusted P-values

Thresholding P-values to determine what fold changes are more significant than others is not
appropriate for this type of data analysis, due to the multiple testing problem. While performing a
large number of simultaneous tests, the probability of getting a significant result simply due to
chance increases with the number of tests. In order to account for multiple testing, perform a
correction (or adjustment) of the P-values so that the probability of observing at least one significant
result due to chance remains below the desired significance level.

The Benjamini-Hochberg adjustment [6] is a statistical method that provides an adjusted P-value
answering the following question: what would be the fraction of false positives if all the genes with
adjusted P-values below a given threshold were considered significant?

The output of rnaseqgde includes a vector of adjusted P-values in the "AdjustedPValue" field. By
default, the P-values are adjusted using the Benjamini-Hochberg adjustment. Alternatively, the
"FDRMethod" Name-Value argument in rnaseqde can be set to "storey" to perform Storey's
procedure [7].

Set a threshold of 0.1 for the adjusted P-values, equivalent to consider a 10% false positives as
acceptable, and identify the genes that are significantly expressed by considering all the genes with
adjusted P-values below this threshold.

% create a table with significant genes

sig = diffTableLocal.AdjustedPValue < 0.1;

diffTableLocalSig = diffTableLocal(sig,:);

diffTableLocalSig = sortrows(diffTableLocalSig, 'AdjustedPValue');
numberSigGenes = size(diffTablelLocalSig,1)

2-47

2 High-Throughput Sequence Analysis

2-48

numberSigGenes =

1904

Identifying the Most Up-regulated and Down-regulated Genes

You can now identify the most up-regulated or down-regulated genes by considering an absolute fold
change above a chosen cutoff. For example, a cutoff of 1 in log2 scale yields the list of genes that are

up-regulated with a 2 fold change.

% find up-regulated genes
up = diffTableLocalSig.Log2FoldChange > 1;

upGenes = sortrows(diffTableLocalSig(up,:), 'Log2FoldChange', 'descend');

numberSigGenesUp = sum(up)

% display the top 10 up-regulated genes
topl0GenesUp = upGenes(1:10,:)

% find down-regulated genes
down = diffTableLocalSig.Log2FoldChange < -1;
downGenes = sortrows(diffTableLocalSig(down,:), 'Log2FoldChange', 'ascend');

numberSigGenesDown

sum(down)

% find top 10 down-regulated genes
topl0GenesDown = downGenes(1:10,:)

numberSigGenesUp =
129
toplOGenesUp =
10x6 table
ID Meanl Mean2 Log2FoldChange PValue AdjustedPValue
"FBgn0030173" 0 6.7957 Inf 0.0063115 0.047764
"FBgn0036822" 0 6.2729 Inf 0.012203 0.079274
"FBgn0052548" 1.0476 15.269 3.8654 0.00016945 0.0022662
"FBgn0050495" 1.0283 12.635 3.6191 0.0018949 0.017972
"FBgn0063667" 3.1042 38.042 3.6153 8.5037e-08 2.3845e-06
"FBgn0033764" 16.324 167.61 3.3601 1.8345e-25 2.9174e-23
"FBgn0037290" 16.228 155.46 3.26 3.5583e-23 4.6941e-21
"FBgn0033733" 1.5424 13.384 3.1172 0.0027276 0.024283
"FBgn0037191" 1.6003 12.753 2.9945 0.0047803 0.038193
"FBgn0033943" 1.581 12.319 2.962 0.0053635 0.041986
numberSigGenesDown
181

Identifying Differentially Expressed Genes from RNA-Seq Data

toplOGenesDown =
10x6 table
ID Meanl Mean2 Log2FoldChange PValue AdjustedPValue
"FBgn0053498" 30.938 0 -Inf 9.8404e-11 4.345e-09
"FBgn0259236" 13.618 0 -Inf 1.5526e-05 0.00027393
"FBgn0052500" 8.7405 0 -Inf 0.00066783 0.0075343
"FBgn0039331" 7.3908 0 -Inf 0.0019558 0.018474
"FBgn0040697" 6.8381 0 -Inf 0.0027378 0.024336
"FBgn0034972" 5.8291 0 -Inf 0.0068564 0.05073
"FBgn0040967" 5.2764 0 -Inf 0.0096039 0.065972
"FBgn0031923" 4.7429 0 -Inf 0.016164 0.098762
"FBgn0085359" 121.97 2.9786 -5.3557 5.5813e-33 1.5068e-30
"FBgn0004854" 14.402 0.53259 -4.7571 8.1587e-05 0.0012034

A good visualization of the gene expressions and their significance is given by plotting the fold
change versus the mean in log scale and coloring the data points according to the adjusted P-values.

figure
scatter(log2(geneTable.meanBase),diffTableLocal.Log2FoldChange,3,diffTableLocal.PValue, '0")
colormap(flipud(cool(256)))

colorbar;

ylabel('log2(Fold Change)"')

xlabel('log2(Mean of normalized counts)')

title('Fold change by FDR')

2-49

2 High-Throughput Sequence Analysis

2-50

Fold change by FDR

4r 1
I
i
3t 4 0.9
2 0.8
. 17 0.7
i
=
= 0r 0.6
o
o -1 0.5
(]
=
o 2T 0.4
g
-3r R . 0.3
g -
4t . 0.2
5t ‘ 0.1
—Fﬁ i i i i i D

-5 0 5 10 15 20
log2{Mean of normalized counts)

You can see here that for weakly expressed genes (i.e. those with low means), the FDR is generally
high because low read counts are dominated by Poisson noise and consequently any biological
variability is drowned in the uncertainties from the read counting.

References

[1] Brooks et al. Conservation of an RNA regulatory map between Drosophila and mammals. Genome
Research 2011. 21:193-202.

[2] Mortazavi et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature
Methods 2008. 5:621-628.

[3] Anders et al. Differential expression analysis for sequence count data. Genome Biology 2010.
11:R106.

[4] Marioni et al. RNA-Seq: An assessment of technical reproducibility and comparison with gene
expression arrays. Genome Research 2008. 18:1509-1517.

[5] Robinson et al. Moderated statistical test for assessing differences in tag abundance.
Bioinformatics 2007. 23(21):2881-2887.

[6] Benjamini et al. Controlling the false discovery rate: a practical and powerful approach to multiple
testing. 1995. Journal of the Royal Statistical Society, Series B57 (1):289-300.

Identifying Differentially Expressed Genes from RNA-Seq Data

[7]1].D. Storey. "A direct approach to false discovery rates", Journal of the Royal Statistical Society, B
(2002), 64(3), pp.479-498.

See Also
featurecount | nbintest | mairplot | plotVariancelLink

More About
. “High-Throughput Sequencing”

2-51

2 High-Throughput Sequence Analysis

Visualize NGS Data Using Genomics Viewer App

The Genomics Viewer app lets you view and explore integrated genomic data with an embedded
version of the Integrative Genomics Viewer (IGV) [1][2]. The genomic data include NGS read
alignments, genome variants, and segmented copy number data.

The first part of this example gives a brief overview of the app and supported file formats. The second
part of the example explores a single nucleotide variation in the cytochrome p450 gene (CYP2C19).

Open the App

At the command line, type genomicsViewer. Alternatively, click the app icon on the Apps tab. The
app requires an internet connection.

By default, the app loads Human (GRCh38/hg38) as the reference sequence and Refseq Genes as the
annotation file. There are two main panels in the app. The left panel is the Tracks panel and the right
panel is the embedded IGV web application. The Tracks panel is a read-only area displaying the track
names, source file names, and track types. The Tracks panel updates accordingly as you configure
the tracks in the embedded IGV app.

Tracks Panel | Embedded Integrative Genomics Viewer (IGV) |

) o &
mport Reference Add tracks Help

hg3s | al v a sor Guide Track Labels
File Type IGv Q

&0

Zoom in to see features

2-52

The Reset button restores the app to the default view with two tracks (HG38 with Refseq Genes) and
removes any other existing tracks. Before resetting, you can save the current view as a session
(.json) file and restore it later.

Add Tracks by Importing Data
Import Reference Sequence

You can import a single reference sequence. The reference sequence must be in a FASTA file. Select
Import Reference on the Home tab. You can also import a corresponding cytoband file that contains

https://igv.org/app/

Visualize NGS Data Using Genomics Viewer App

cytogenetic G-banding data. You can add local files or specify external URLs. The URL must start with
either https or gs. Other file transfer protocols, such as ftp, are not supported.

Import Sequence Read Alignment Data

You can import multiple data sets of sequence read alignment data. The alignment data must be a
BAM or CRAM file. It is not required that you have the corresponding index file (. BAI or .CRAI) in
the same location as your BAM or CRAM file. However, the absence of the index file will make the
app slower.

You can add read alignment files using Add tracks from file and Add tracks from URL options
from the Add tracks button. If you are specifying a URL, the URL must start with either https or gs.
Other file transfer protocols, such as ftp, are not supported.

Import Feature Annotations and Other Genomic Data

You can import multiple sets of feature annotations from several files that contain data for a single
reference sequence. The supported annotation files are: .BED, .GFF, .GFF3, and .GTF.

You can also import structural variants (.VCF) and visualize genetic alterations, such as insertions
and deletions.

You can view segmented copy number data (. SEG) and quantitative genomic data (.WIG, .BIGWIG,
and .BEDGRAPH), such as ChIP peaks and alignment coverage.

You can add annotation and genomic data files using Add tracks from file and Add tracks from
URL options from the Add tracks button. If you are specifying a URL, the URL must start with either
https or gs. Other file transfer protocols, such as FTP, are not supported.

Visualize Single Nucleotide Variation in Cytochrome P450

The CYP2C19 gene is a member of the cytochrome P450 gene family. Enzymes produced from
cytochrome P450 genes are involved in the metabolism of various molecules and chemicals within
cells. The CYP2C19 enzyme plays a role in the metabolizing of at least 10 percent of commonly
prescribed drugs [3]. Polymorphisms in the cytochrome p450 family may cause adverse drug
responses in individuals. One example of single nucleotide variation is rs4986893 at position
chr10:94,780,653 where G is replaced by A. This allelic variant is also known as CYP2C19*3. The
following steps show how to visualize such variation in the app using both low coverage and high
coverage data.

Load Session File
For the purposes of this example, start with a session file (rs4986893. json) that has some

preloaded tracks. After downloading the file, load it in the app. Click Open and select
rs4986893. json.

Explore Low Coverage Data

The session contains three tracks:

* Human (GRCh38/hg38) as a reference

2-53

2 High-Throughput Sequence Analysis

* NA18564 as low coverage alignment data
* Refseq Genes

The low coverage alignment data comes from a female Han Chinese from Beijing, China. The sample
ID is NA18564 and the sample has been identified with the CYP2C19*3 mutation [4].

HOME

oE2 & @
Open Save Reset ImportRefarer\ce Help

SESSION TRACKS RESOURCES a
TRACKS o -
GV e antos s | Qe (i) (o) QTR © ©
Name File Type
1 Homan (GRCI38ng38) g3 a secquence I T W N BN T Wy WO
2 NA18564 NA18564.alt_bwamem_GRCh38DH.20150718.CHB.low_c... alignment
N[- ==—— wpm mmopmiy wmosse wmew smogms swgew | smges s

GATI'GTAAGCAI:CGCDTGEATEGAEGTAAGGGCAAGTT*

Bj NAT8564 o
o

G ATTGTAA CACCGCCCTOGOGATOGCGCASGOGTAAGSCGCAAGTT
GATTOGTAABGEACCEC CTG6O6ATCCGCA T A A cC C A A TT
GATTGTAAG ACCECEC
¢ ACCCCCTOGOGATG CGCAGGTAAGGEGGCAAGTT
G ATTGTAA € CCCCCTOGAATCCASGOGTAAGSCCAAGTT
G ATTGTAA CACCCCCTOGOGATCCAGOGTAAGGSGCCAAGTT
GATTGTAAGGCACGCGCCCTOGAATCGCCAGGTAAGGGCGCAAGTT
G ATTGTAAGECACECCCCTGEGG TGCGGCAG TAAGGEGCAAGTT
Refseq Genes g 5 5 5 *

[T

L] 4 3

The alignment data has been centered around the location of the mutation on the CYP2C19 gene.

1 Click the orange bar in the coverage area to look at the position and allele distribution
information.

"EI4.TE-G.IE~5D bp 'EI4.TE-G.IE-'BD bp

CCCTGOGATT® CTC CAGO GTA

x

CcCCcCCTa chr1ﬂ:94.?8D:653 T A
cmcmcwTeam Total Count 7 a T A
: 2 CUTTET A 2(29%, 0+, 2-) e
ccenrmayC 0 G T A
CUCHCNTIEN G 5(71%, 2+, 3-) [ENTHA
cC CCcCT G T o G T A
e cCCcCTG T A
N O

It shows that 71% of the reads have G while 29% have A at the location chr10:94,780,653. This
data is a low coverage data and may not show all the occurrences of this mutation. A high
coverage data will be explored later in the example.

Close the data tip window.

2-54

Visualize NGS Data Using Genomics Viewer App

2 You can customize the various aspects of the data display in the app. For example, you can
change the track height to make more room for later tracks. Click the second gear icon. Select
Set track height. Enter 200.

04,730,870 bp
1

caasTTT £

x|
Set track name
Set track height @

Set track color
Color by

read strand
first-of-pair strand
» pair orientation

ooole nnn-

fragment length
tag

+ Show all bases
View as pairs
Show soft clips

Set visibility window

— Lo

Remaove track

For details on the embedded IGV app and its available options, visit here.
Explore High Coverage Data
You can look at the high coverage data from the same sample to see the occurrences of this mutation.

Go to The International Genome Sample Resource website.
Search for the sample NA18564.
Download the Exome alignment file that is in the . CRAM format.

Also download the corresponding index file that is in the .CRAI format. Save the file in the same
location as the source .CRAM file.

5 Click the (+) icon on the Home tab. Select the downloaded . CRAM file and click Open.

D W N R

2-55

https://igvteam.github.io/igv-webapp/
https://www.internationalgenome.org/

2 High-Throughput Sequence Analysis

OH9 & . @

Open Save Reset ImportReference Addtracks — Help

SESSION TRACKS RESOURCES . =
M - ' IGY e [ehno v| [chri0:94780,634-94 780673 Q40 bp (Ccorsorcuae) (_coreriee) (R @ © m
Name File Type | s — e
RILER Rl S SegTEe | (I T) "IN BN F IS ey v N
2 NA18564 NA18564 alt_bwamem_GRCh38DH.20150718 CHB low_covera. .. alignment ;

3 frack3 NA18564.alt_bwamem_GRCh38DH.20150826.CHE.exome.cram alignment ‘ PATE0,040 b S4750 300 b #4.780/080.68 PATEC 070 b
4 Refseq Genes refGene.sorted txt.gz annotation | G 6 ATTOTAAGCACECEETABOATCCAGAOTAAGBCCECEAAOGTTTHE

e

neeanan0
nonnoonco
fooooooo
CEL
>
>
ee
Ci
>
>
e
<4

CEEEI R

S ===
=

eee esbee
BEE 2R3

L
6o els
Be8s
]
B
Bees
EE

}]

e .|
A
A
A
T
A
A
A
A
A
Refseq Genes s 5 L% BB]

cvP2cia

The high coverage data appears as track3. You can now see many occurrences of the mutation in
several reads.

6 Click the orange bar in the coverage area to see the allele distribution. It shows that G is
replaced by A in almost 50% of the time.

®

chrl0:94, 780 6563
Total Count 161

A 79 (49%, T+, 72-)
C o
G B2 (51%, 10+, 72-)
TO
N O

References

[1] Robinson, J., H. Thorvaldsdéttir, W. Winckler, M. Guttman, E. Lander, G. Getz,]J. Mesirov. 2011.
Integrative Genomics Viewer. Nature Biotechnology. 29:24-26.

[2] Thorvaldsdéttir, H., J. Robinson, J. Mesirov. 2013. Integrative Genomics Viewer (IGV): High-
performance genomics data visualization and exploration. Briefings in Bioinformatics.
14:178-192.

[3] https://medlineplus.gov/genetics/gene/cyp2c19/

2-56

https://medlineplus.gov/genetics/gene/cyp2c19/

Visualize NGS Data Using Genomics Viewer App

[4] https://www.coriell.org/0/Sections/Search/Sample Detail.aspx?Ref=NA18564&Product=DNA

See Also
Genomics Viewer | Sequence Alignment | Sequence Viewer

2-57

https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA18564&Product=DNA

2 High-Throughput Sequence Analysis

Exploring Genome-Wide Differences in DNA Methylation
Profiles

2-58

This example shows how to perform a genome-wide analysis of DNA methylation in the human by
using genome sequencing.

Note: For enhanced performance, MathWorks recommends that you run this example on a 64-bit
platform, because the memory footprint is close to 2 GB. On a 32-bit platform, if you receive "Out of
memory" errors when running this example, try increasing the virtual memory (or swap space) of
your operating system or try setting the 3GB switch (32-bit Windows® XP only). For details, see
“Resolve “Out of Memory” Errors”.

Introduction

DNA methylation is an epigenetic modification that modulates gene expression and the maintenance
of genomic organization in normal and disease processes. DNA methylation can define different
states of the cell, and it is inheritable during cell replication. Aberrant DNA methylation patterns
have been associated with cancer and tumor suppressor genes.

In this example you will explore the DNA methylation profiles of two human cancer cells: parental
HCT116 colon cancer cells and DICERexb5 cells. DICERex5 cells are derived from HCT116 cells after
the truncation of the DICERI1 alleles. Serre et al. in [1] proposed to study DNA methylation profiles by
using the MBD2 protein as a methyl CpG binding domain and subsequently used high-throughput
sequencing (HTseq). This technique is commonly known as MBD-Seq. Short reads for two replicates
of the two samples have been submitted to NCBI's SRA archive by the authors of [1]. There are other
technologies available to interrogate DNA methylation status of CpG sites in combination with HTseq,
for example MeDIP-seq or the use of restriction enzymes. You can also analyze this type of data sets
following the approach presented in this example.

Data Sets

You can obtain the unmapped single-end reads for four sequencing experiments from NCBI. Short
reads were produced using Illumina®'s Genome Analyzer II. Average insert size is 120 bp, and the
length of short reads is 36 bp.

This example assumes that you:

(1) downloaded the files SRRO30222.sra, SRRO30223.sra, SRR030224.sra and SRRO30225.sra
containing the unmapped short reads for two replicates of from the DICERex5 sample and two
replicates from the HCT116 sample respectively, from NCBI SRA Run Selector and converted them to
FASTQ-formatted files using the NCBI SRA Toolkit.

(2) produced SAM-formatted files by mapping the short reads to the reference human genome (NCBI
Build 37.5) using the Bowtie [2] algorithm. Only uniquely mapped reads are reported.

(3) compressed the SAM formatted files to BAM and ordered them by reference name first, then by
genomic position by using SAMtools [3].

This example also assumes that you downloaded the reference human genome (GRCh37.p5). You can
use the bowtie-inspect command to reconstruct the human reference directly from the bowtie
indices. Or you may download the reference from the NCBI repository by uncommenting the
following line:

http://www.ncbi.nlm.nih.gov/sra/
https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP001414&o=acc_s%3Aa

Exploring Genome-Wide Differences in DNA Methylation Profiles

% getgenbank('NC_000009', 'FileFormat', 'fasta', 'tofile', 'hsch9.fasta');

Creating a MATLAB® Interface to the BAM-Formatted Files

To explore the signal coverage of the HCT116 samples you need to construct a BioMap. BioMap has
an interface that provides direct access to the mapped short reads stored in the BAM-formatted file,
thus minimizing the amount of data that is actually loaded into memory. Use the function baminfo to
obtain a list of the existing references and the actual number of short reads mapped to each one.

info = baminfo('SRR030224.bam', 'ScanDictionary',true);
fprintf('%-35s%s\n', 'Reference’', 'Number of Reads');
for i = 1l:numel(info.ScannedDictionary)
fprintf('%-35s%d\n',info.ScannedDictionary{i}, ...
info.ScannedDictionaryCount(i));

end

Reference Number of Reads
91224589800 | ref|NC_000001.10| 205065
91224589811 | ref|NC_000002.11| 187019
g1|224589815|ref|NC_000003.11| 73986
91224589816 | ref|NC_000004.11| 84033
91224589817 |ref|NC_000005.9| 96898
91224589818 | ref|NC_000006.11| 87990
91224589819 | ref|NC_000007.13| 120816
91224589820 | ref|NC_000008.10| 111229
91224589821 | ref|NC_000009.11| 106189
91224589801 | ref|NC_000010.10| 112279
091224589802 | ref|NC_000011.9| 104466
91224589803 | ref|NC_000012.11]| 87091
91224589804 | ref|NC_000013.10| 53638
g1|224589805|ref|NC_000014.8| 64049
091224589806 | ref|NC_000015.9| 60183
091224589807 | ref|NC _000016.9| 146868
91224589808 | ref|NC_000017.10]| 195893
091224589809 | ref|NC_000018.9| 60344
91224589810 | ref|NC_000019.9| 166420
91224589812 | ref|NC_000020.10| 148950
091224589813 | ref|NC_000021.8| 310048
91224589814 | ref|NC_000022.10| 76037
91224589822 | ref|NC_000023.10| 32421
091224589823 | ref|NC_000024.9| 18870
gi|17981852|ref|NC _001807.4| 1015
Unmapped 6805842

In this example you will focus on the analysis of chromosome 9. Create a BioMap for the two HCT116
sample replicates.

bm hctl116 1 = BioMap('SRR030224.bam', 'SelectRef', 'gi|224589821|ref|NC 000009.11|")
bm hctl116 2 = BioMap('SRR030225.bam', 'SelectRef', 'gi|224589821|ref|NC 000009.11|")
bm hctlle 1 =

BioMap with properties:
SequenceDictionary: 'gi|224589821|ref|NC 000009.11|"

Reference: [106189x1 File indexed property]
Signature: [106189x1 File indexed property]

2-59

2 High-Throughput Sequence Analysis

Start: [106189x1 File indexed property]
MappingQuality: [106189x1 File indexed property]
Flag: [106189x1 File indexed property]
MatePosition: [106189x1 File indexed property]
Quality: [106189x1 File indexed property]
Sequence: [106189x1 File indexed property]
Header: [106189x1 File indexed property]

NSeqs: 106189
Name: "'

bm hctlle 2 =
BioMap with properties:

SequenceDictionary: 'gi|224589821|ref|NC 000009.11|"

Reference: [107586x1 File indexed property]
Signature: [107586x1 File indexed property]
Start: [107586x1 File indexed property]
MappingQuality: [107586x1 File indexed property]
Flag: [107586x1 File indexed property]
MatePosition: [107586x1 File indexed property]
Quality: [107586x1 File indexed property]
Sequence: [107586x1 File indexed property]
Header: [107586x1 File indexed property]

NSeqs: 107586
Name: "'

Using a binning algorithm provided by the getBaseCoverage method, you can plot the coverage of
both replicates for an initial inspection. For reference, you can also add the ideogram for the human
chromosome 9 to the plot using the chromosomeplot function.

figure

ha = gca;

hold on

n = 141213431; % length of chromosome 9

[cov,bin] = getBaseCoverage(bm hctll6e 1,1,n, 'binWidth',100);

hl = plot(bin,cov,'b"); % plots the binned coverage of bm hctll6 1

[cov,bin] = getBaseCoverage(bm hctll6e 2,1,n, 'binWidth',100);

h2 = plot(bin,cov, 'g'); % plots the binned coverage of bm hctl1l6 2

chromosomeplot('hs cytoBand.txt', 9, 'AddToPlot', ha) % plots an ideogram along the x-axis
axis(ha,[1 n 0 1001) % zooms-in the y-axis

fixGenomicPositionLabels(ha) % formats tick labels and adds datacursors
legend([hl h2],'HCT116-1"','HCT116-2"', 'Location', 'NorthEast"')
ylabel('Coverage')

title('Coverage for two replicates of the HCT116 sample')

fig = gcf;

fig.Position = max(fig.Position, [0 @ 900 0]); % resize window

2-60

Exploring Genome-Wide Differences in DNA Methylation Profiles

20,000,000 40,000,000 60,000,000 80,000,000 100,000,000 120,000,000 140,000,000

100 T T T T T T i
HCT1186-1
HCT116-2
BO _
80 - | ||
| | \|
40 fy } | | ‘ I
| | |
| |
20 H I | | || ‘ "
.I il 1l '| ||" i || e '|.|.||'- A | | .[I |.|||I[]. l
bk AL .l"ll'! g R | _._.JII.I TGN RSTVALER A 'LI".- s A

I [| 1 L T I | | [R U I U N B A I | 1 [A | 1 | I | [
i‘: T RS BRI I s I TR B S g B Mmoo I 2 B
FEII ok : . a e T ooy o E
33 3 ey w oy oy 22204 4 Yoy Sy yydgyy B 88T % 3 3smild

Because short reads represent the methylated regions of the DNA, there is a correlation between
aligned coverage and DNA methylation. Observe the increased DNA methylation close to the
chromosome telomeres; it is known that there is an association between DNA methylation and the
role of telomeres for maintaining the integrity of the chromosomes. In the coverage plot you can also
see a long gap over the chromosome centromere. This is due to the repetitive sequences present in
the centromere, which prevent us from aligning short reads to a unique position in this region. In the
data sets used in this example only about 30% of the short reads were uniquely mapped to the
reference genome.

Correlating CpG Islands and DNA Methylation

DNA methylation normally occurs in CpG dinucleotides. Alteration of the DNA methylation patterns
can lead to transcriptional silencing, especially in the gene promoter CpG islands. But, it is also
known that DNA methylation can block CTCF binding and can silence miRNA transcription among
other relevant functions. In general, it is expected that mapped reads should preferably align to CpG
rich regions.

Load the human chromosome 9 from the reference file hs37. fasta. For this example, it is assumed
that you recovered the reference from the Bowtie indices using the bowtie-inspect command;
therefore hs37. fasta contains all the human chromosomes. To load only the chromosome 9 you can
use the option nave-value pair BLOCKREAD with the fastaread function.

chr9 = fastaread('hs37.fasta', 'blockread',9);
chr9.Header

ans =

'gi]224589821 | ref|NC_000009.11| Homo sapiens chromosome 9, GRCh37 primary reference assembly

2-61

2 High-Throughput Sequence Analysis

Use the cpgisland function to find the CpG clusters. Using the standard definition for CpG islands
[4], 200 or more bp islands with 60% or greater CpGobserved/CpGexpected ratio, leads to 1682 GpG
islands found in chromosome 9.

cpgi cpgisland(chr9.Sequence)

cpgi =
struct with fields:

Starts: [10783 29188 73049 73686 113309 114488 116877 117469 117987 ..]
Stops: [11319 29409 73624 73893 114336 114809 117105 117985 118203 ..]

Use the getCounts method to calculate the ratio of aligned bases that are inside CpG islands. For
the first replicate of the sample HCT116, the ratio is close to 45%.

aligned bases in CpG_islands = getCounts(bm hctl116 1,cpgi.Starts,cpgi.Stops, ‘'method', 'sum')
aligned bases total = getCounts(bm hctl16 1,1,n, '‘'method’, 'sum')
ratio = aligned bases in CpG_islands ./ aligned bases total

aligned bases in CpG_islands =

1724363

aligned bases total =

3822804

ratio =
0.4511
You can explore high resolution coverage plots of the two sample replicates and observe how the

signal correlates with the CpG islands. For example, explore the region between 23,820,000 and
23,830,000 bp. This is the 5' region of the human gene ELAVL2.

rl = 23820001; % set the region limits

r2 = 23830000;

fhELAVL2 = figure; % keep the figure handle to use it later
hold on

% plot high-resolution coverage of bm hctl1l6 1
hl = plot(rl:r2,getBaseCoverage(bm hctl1l6 1,rl1,r2, 'binWidth',1),'b");
% plot high-resolution coverage of bm hctll6 2
h2 = plot(rl:r2,getBaseCoverage(bm hctll6 2,rl,r2, 'binWidth',1),'g");

% mark the CpG islands within the [rl r2] region
for i = 1l:numel(cpgi.Starts)
if cpgi.Starts(i)>rl && cpgi.Stops(i)<r2 % is CpG island inside [rl r2]?

px = [cpgi.Starts([i i]) cpgi.Stops([i i])]; % x-coordinates for patch
py = [0 max(ylim) max(ylim) 0]; % y-coordinates for patch
hp = patch(px,py,'r', 'FaceAlpha',.l, 'EdgeColor','r','Tag"', 'cpgi');

end

2-62

Exploring Genome-Wide Differences in DNA Methylation Profiles

end

axis([rl r2 0 20]) zooms-in the y-axis
fixGenomicPositionLabels(gca) formats tick labels and adds datacursors
legend([hl h2 hp], 'HCT116-1"', 'HCT116-2"','CpG Islands')
ylabel('Coverage')

xlabel('Chromosome 9 position')

title('Coverage for two replicates of the HCT116 sample')

%
%

Coverage for two replicates of the HCT116 sample

20 T T T T T T T
HCT116-1
18 HCT116-2 |7
[1cpG Islands

-

ra

T

- —
1

Coverage
—
(==}
T

8r ‘ 7

4l . k | |
L W ek

23,821,000 23,822,000 23,823,000 23,824,000 23,825,000 23,826,000 23,827,000 23,828,000 23,829,000 23,830,000
Chromosome 9 position

Statistical Modelling of Count Data

To find regions that contain more mapped reads than would be expected by chance, you can follow a
similar approach to the one described by Serre et al. [1]. The number of counts for non-overlapping
contiguous 100 bp windows is statistically modeled.

First, use the getCounts method to count the number of mapped reads that start at each window. In
this example you use a binning approach that considers only the start position of every mapped read,
following the approach of Serre et al. However, you may also use the OVERLAP and METHOD name-
value pairs in getCounts to compute more accurate statistics. For instance, to obtain the maximum
coverage for each window considering base pair resolution, set OVERLAP to 1 and METHOD to MAX.

n = numel(chr9.Sequence); % length of chromosome

w = 1:100:n; % windows of 100 bp

counts 1 = getCounts(bm hctll6 1,w,w+99, 'independent',true, 'overlap', 'start');
counts 2 = getCounts(bm hctll6 2,w,w+99, 'independent',true, 'overlap', 'start');

First, try to model the counts assuming that all the windows with counts are biologically significant
and therefore from the same distribution. Use the negative bionomial distribution to fit a model the
count data.

nbp = nbinfit(counts 1);

Plot the fitted model over a histogram of the empirical data.

2-63

2 High-Throughput Sequence Analysis

figure

hold on

emphist = histc(counts 1,0:100);
bar(0:100,emphist./sum(emphist),
plot(0:100,nbinpdf(0:100,nbp(1),
axis([0 50 0 .001])
legend('Empirical Distribution', 'Negative Binomial Fit')
ylabel('Frequency')

xlabel('Counts"')

title('Frequency of counts, 100bp windows (HCT116-1)"')

% calculate the empirical distribution
'c','grouped') % plot histogram
nbp(2)),'b"', 'linewidth',2); % plot fitted model

.10 Frequency of counts, 100bp windows (HCT116-1)
1

[lEmpirical Distribution
Megative Binomial Fit

=
w0

Frequency
© © © ©o © o
[¥%} = n on = =1}
|

=
fa

0.1

. HHHHHHHH‘IHW i

0 5 10 15 20 25 30 35 40 45 50
Counts

The poor fitting indicates that the observed distribution may be due to the mixture of two models, one
that represents the background and one that represents the count data in methylated DNA windows.

A more realistic scenario would be to assume that windows with a small number of mapped reads are
mainly the background (or null model). Serre et al. assumed that 100-bp windows containing four or
more reads are unlikely to be generated by chance. To estimate a good approximation to the null
model, you can fit the left body of the empirical distribution to a truncated negative binomial
distribution. To fit a truncated distribution use the mle function. First you need to define an
anonymous function that defines the right-truncated version of nbinpdf.

rtnbinpdf = @(x,pl,p2,t) nbinpdf(x,pl,p2) ./ nbincdf(t-1,pl,p2);
Define the fitting function using another anonymous function.

rtnbinfit = @(x2,t) mle(x2, 'pdf',@(x3,pl,p2) rtnbinpdf(x3,pl,p2,t), 'start’',nbinfit(x2), ' lower", [

2-64

Exploring Genome-Wide Differences in DNA Methylation Profiles

Before fitting the real data, let us assess the fitting procedure with some sampled data from a known
distribution.

nbp = [0.5 0.2]; % Known coefficients
x = nbinrnd(nbp(1l),nbp(2),10000,1); % Random sample
% S

trun = 6; et a truncation threshold

nbphatl = nbinfit(x); % Fit non-truncated model to all data

nbphat2 = nbinfit(x(x<trun)); % Fit non-truncated model to truncated data (wrong)
nbphat3 = rtnbinfit(x(x<trun),trun); % Fit truncated model to truncated data
figure

hold on

emphist = histc(x,0:100); % Calculate the empirical distribution

bar(0:100,emphist./sum(emphist),'c', 'grouped') % plot histogram

hl = plot(0:100,nbinpdf(0:100,nbphatl(1l),nbphatl(2)),'b-0"', " 'linewidth',2);
h2 = plot(0:100,nbinpdf(0:100,nbphat2(1),nbphat2(2)),'r", " 'linewidth',2);
h3 = plot(0:100,nbinpdf(0:100,nbphat3(1),nbphat3(2)),'qg", " 'linewidth',2);

axis([0 25 0 .2])

legend([h1l h2 h3], 'Neg-binomial fitted to all data',...
'Neg-binomial fitted to truncated data',...
'Truncated neg-binomial fitted to truncated data')

ylabel('Frequency"')

xlabel('Counts')

=8— Neg-binomial fitted to all data
MNeg-binomial fitted to truncated data
Truncated neg-binomial fitted to truncated data

0.14

Frequency
=

=T

== 2

=)
o
=+

0.06

0.04

0.02

2-65

2 High-Throughput Sequence Analysis

Identifying Significant Methylated Regions

For the two replicates of the HCT116 sample, fit a right-truncated negative binomial distribution to
the observed null model using the rtnbinfit anonymous function previously defined.

trun = 4; % Set a truncation threshold (as in [1])
pnl rtnbinfit(counts 1(counts l<trun),trun); % Fit to HCT116-1 counts
pn2 rtnbinfit(counts 2(counts 2<trun),trun); % Fit to HCT116-2 counts

Calculate the p-value for each window to the null distribution.

pvall
pval2

1 - nbincdf(counts 1,pnl(1),pnl(2))
1 - nbincdf(counts 2,pn2(1),pn2(2))

’
’

Calculate the false discovery rate using the mafdr function. Use the name-value pair BHFDR to use
the linear-step up (LSU) procedure ([6]) to calculate the FDR adjusted p-values. Setting the FDR <
0.01 permits you to identify the 100-bp windows that are significantly methylated.

fdrl
fdr2

mafdr(pvall, 'bhfdr', true);
mafdr(pval2, 'bhfdr', true);

fdrl<.01; % logical vector indicating significant windows in HCT116-1
fdr2<.01; % logical vector indicating significant windows in HCT116-2
2 =wl & w2; % logical vector indicating significant windows in both replicates

wl
w2
wl
Number of sig windows HCT116

1
Number of sig windows HCT116 2
Number of sig windows HCT116 =

sum(wl)
sum(w2)
sum(wl2)

Number of sig windows HCT116 1 =

1662

Number of sig windows HCT116 2

1674

Number of sig windows HCT11l6 =

1346

Overall, you identified 1662 and 1674 non-overlapping 100-bp windows in the two replicates of the
HCT116 samples, which indicates there is significant evidence of DNA methylation. There are 1346
windows that are significant in both replicates.

For example, looking again in the promoter region of the ELAVL2 human gene you can observe that
in both sample replicates, multiple 100-bp windows have been marked significant.

figure(fhELAVL2) % bring back to focus the previously plotted figure

plot(w(wl)+50,counts 1(wl),'bs', 'HandleVisibility', 'off') % plot significant windows in HCT116-:
plot(w(w2)+50,counts 2(w2),'gs', 'HandleVisibility', 'off') % plot significant windows in HCT116-:
axis([rl r2 0 100])

title('Significant 100-bp windows in both replicates of the HCT11l6 sample')

2-66

Exploring Genome-Wide Differences in DNA Methylation Profiles

Coverage

Significant 100-bp windows in both replicates of the HCT116 sample
T T T T T T T

100 T T

HCT116-1
80 - HCT1168-2 |7
] [1cpG Islands

Tor o n

60 - —

40 - |
aor m [ul

[ul
= u i

of JW R A R]

23,821,000 23,822,000 23,823,000 23,824,000 23,825,000 23,826,000 23,827,000 23,828,000 23,829,000 23,830,000
Chromosome 9 position

20

—p— |

Finding Genes With Significant Methylated Promoter Regions

DNA methylation is involved in the modulation of gene expression. For instance, it is well known that
hypermethylation is associated with the inactivation of several tumor suppressor genes. You can
study in this data set the methylation of gene promoter regions.

First, download from Ensembl a tab-separated-value (TSV) table with all protein encoding genes to a
text file, ensemblmart genes hum37.txt. For this example, we are using Ensembl release 64.
Using Ensembl's BioMart service, you can select a table with the following attributes: chromosome
name, gene biotype, gene name, gene start/end, and strand direction.

Use the provided helper function ensemblmart2gff to convert the downloaded TSV file to a GFF
formatted file. Then use GFFAnnotation to load the file into MATLAB and create a subset with the
genes present in chromosome 9 only. This results 800 annotated protein-coding genes in the Ensembl
database.

GFFfilename = ensemblmart2gff('ensemblmart genes hum37.txt');
a = GFFAnnotation(GFFfilename)

a9 = getSubset(a, 'reference','9")

numGenes = a9.NumEntries

a =
GFFAnnotation with properties:
FieldNames: {1x9 cell}
NumEntries: 21184
a9 =

GFFAnnotation with properties:

2-67

http://www.ensembl.org/biomart/martview/

2 High-Throughput Sequence Analysis

2-68

FieldNames: {1x9 cell}
NumEntries: 800

numGenes =

800

Find the promoter regions for each gene. In this example we consider the proximal promoter as the

-500/100 upstream region.

downstream
upstream

500;
100;

geneDir = strcmp(a9.Strand, '+'); % logical vector indicating strands in the forward direction

% calculate promoter's start position for genes in the forward direction
promoterStart(geneDir) = a9.Start(geneDir) - downstream;

% calculate promoter's end position for genes in the forward direction
promoterStop(geneDir) = a9.Start(geneDir) + upstream;

% calculate promoter's start position for genes in the reverse direction
promoterStart(~geneDir) = a9.Stop(~geneDir) - upstream;

% calculate promoter's end position for genes in the reverse direction
promoterStop(~geneDir) = a9.Stop(~geneDir) + downstream;

Use a dataset as a container for the promoter information, as we can later add new columns to

store gene counts and p-values.

promoters = dataset({a9.Feature, 'Gene'});
promoters.Strand = char(a9.Strand);
promoters.Start = promoterStart';
promoters.Stop = promoterStop';

Find genes with significant DNA methylation in the promoter region by looking at the number of

mapped short reads that overlap at least one base pair in the defined promoter region.

promoters.Counts 1 = getCounts(bm hctll6 1,promoters.Start,promoters.Stop,...

'overlap',1, 'independent', true);

promoters.Counts 2 = getCounts(bm hctll6 2,promoters.Start,promoters.Stop,...

'overlap',1, 'independent', true);
Fit a null distribution for each sample replicate and compute the p-values:

trun = 5; % Set a truncation threshold

pnl = rtnbinfit(promoters.Counts 1(promoters.Counts 1l<trun),trun);
pn2 = rtnbinfit(promoters.Counts 2(promoters.Counts 2<trun),trun);
promoters.pval 1 = 1 - nbincdf(promoters.Counts 1,pnl(1l),pnl(2));
promoters.pval 2 = 1 - nbincdf(promoters.Counts 2,pn2(1l),pn2(2));

Fit to
Fit to
p-value
p-value

%

%
%
%

Number of sig promoters = sum(promoters.pval 1<.01 & promoters.pval 2<.01)

Ratio of sig methylated promoters = Number of sig promoters./numGenes

Number of sig promoters =

74

HCT116-1 promoter col
HCT116-2 promoter col
for every promoter il
for every promoter il

Exploring Genome-Wide Differences in DNA Methylation Profiles

Ratio of sig methylated promoters =

0.0925

Observe that only 74 (out of 800) genes in chromosome 9 have significantly DNA methylated regions
(pval<0.01 in both replicates). Display a report of the 30 genes with the most significant methylated
promoter regions.

[~,order] = sort(promoters.pval 1.*promoters.pval 2);
promoters(order(1:30),[1 2 3 45 7 6 8])

ans

Gene

{'DMRT3'
{'CNTFR'
{'GABBR2'
{'CACNA1B'
{'BARX1'
{'FAM78A"
{'FOXB2'
{'TLE4"'
{'ASTN2'
{'FOXE1'
{'MPDZ"'
{'PTPRD'
{'PALM2-AKAP2'
{'FAM69B"
{'WNK2'"
{'IGFBPL1'
{'AKAP2'
{'C9orf4"’
{'COL5A1"
{'LHX3"
{'OLFM1'
{'NPR2"
{'DBC1'
{'SOHLH1"'
{'PIP5K1B
{'PRDM12"'
{'ELAVL2'
{'ZFP37'
{'RP11-35N6.1"
{'DMRT2'

pval 1
.6613e-16
.6613e-16
.6613e-16
.6613e-16
.6613e-16
.6613e-16
1.4e-13

S o e

Counts 2

253
226
400
408
286
499
165

Strand Start

976464
34590021
101471379
140771741
96717554
134151834
79634071
82186188
120177248
100615036
13279489
10612623
112542089
139606522
95946698
38424344
112542269
111929471
137533120
139096855
137966768
35791651
122131645
138591274
71320075
133539481
23826235
115818939
103790491
1049854

pval 2

[e) O, NG, G, 0, O, 0,

.5511e-16
.5511e-16
.5511e-16
.5511e-16
.5511e-16
.5511e-16
.0352e-13

Stop
977064
34590621
101471979
140772341
96718154
134152434
79634671
82186788
120177848
100615636
13280089
10613223
112542689
139607122
95947298
38424944
112542869
111930071
137533720
139097455
137967368
35792251
122132245
138591874
71320675
133540081
23826835
115819539
103791091
1050454

Counts 1
223
219
404
454
264
497
163
157
141
149
129
145
134
112
108
110
107
102
84
74
75
68
61

2-69

2 High-Throughput Sequence Analysis

2-70

3.5649e-13 151 4.7347e-12
4.3566e-12 163 8.0969e-13
1.2447e-12 133 6.7598e-11
2.8679%e-11 148 7.3682e-12
2.3279%e-12 127 1.6448e-10
1.3068e-11 135 5.0276e-11
4.1911e-10 144 1.3295e-11
7.897e-10 125 2.2131e-10
5.7523e-10 114 1.1364e-09
9.2538e-10 106 3.7513e-09
2.0467e-09 96 1.6795e-08
3.6266e-08 97 1.4452e-08
1.8171e-07 91 3.5644e-08
1.5457e-07 69 1.0074e-06
4.8093e-07 73 5.4629e-07
1.5082e-06 62 2.9575e-06
3.4322e-06 67 1.3692e-06
2.0943e-06 63 2.5345e-06
5.6364e-06 61 3.4518e-06
9.2778e-06 62 2.9575e-06
2.0943e-06 47 3.0746e-05
1.7771e-06 42 6.8037e-05
4.7762e-06 46 3.6016e-05

Finding Intergenic Regions that are Significantly Methylated

Serre et al. [1] reported that, in these data sets, approximately 90% of the uniquely mapped reads fall
outside the 5' gene promoter regions. Using a similar approach as before, you can find genes that
have intergenic methylated regions. To compensate for the varying lengths of the genes, you can use
the maximum coverage, computed base-by-base, instead of the raw number of mapped short reads.
Another alternative approach to normalize the counts by the gene length is to set the METHOD name-

value pair to rpkm in the getCounts function.

intergenic = dataset({a9.Feature, 'Gene'});
intergenic.Strand = char(a9.Strand);
intergenic.Start = a9.Start;
intergenic.Stop = a9.Stop;

intergenic.Counts_1 = getCounts(bm hctl1l6 1,intergenic.Start,intergenic.Stop,...

'overlap', 'full', 'method', 'max', 'independent', true);

intergenic.Counts 2 = getCounts(bm hctll6 2,intergenic.Start,intergenic.Stop, ...

'overlap', 'full', 'method', 'max', 'independent', true);
trun = 10; % Set a truncation threshold
pnl = rtnbinfit(intergenic.Counts_1(intergenic.Counts 1<trun),trun); Fit to
pn2 = rtnbinfit(intergenic.Counts_2(intergenic.Counts 2<trun),trun); Fit to
intergenic.pval 1 = 1 - nbincdf(intergenic.Counts 1,pnl(1),pnl(2)); % p-value
intergenic.pval 2 = 1 - nbincdf(intergenic.Counts 2,pn2(1),pn2(2)); % p-value

%
%

Number of sig genes = sum(intergenic.pval 1<.01 & intergenic.pval 2<.01)
Ratio of sig methylated genes = Number of sig genes./numGenes
[~,order] = sort(intergenic.pval 1l.*intergenic.pval 2);

intergenic(order(1:30),[1 2 3 45 7 6 8])

HCT116-1 intergeni
HCT116-2 intergeni
for every intergen.
for every intergen.

Exploring Genome-Wide Differences in DNA Methylation Profiles

Number of sig genes =

Ratio of sig methylated genes

ans

62

0.0775

Gene

{'AL772363.1"'

{'CACNA1B'
{'susD1’
{'C9rf172"
{'NR5AL"
{'BARX1"
{'KCNT1"
{'GABBR2"
{'FOXB2"
{'NDOR1"
{'KIAA1045"
{'ADAMTSL2"
{'PAX5"
{'OLFM1"
{'PBX3"
{'FOXE1"
{'MPDZ"
{'ASTN2"
{'ARRDC1"
{'IGFBPL1"
{'LHX3"
{'PAPPA’
{'CNTFR®
{'DMRT3"
{'TUSC1"
{"ELAVL2"
{'SMARCA2"
{'GAS1"
{'GRIN1"
{'TLE4"

pval 1

8.6597e-15
8.6597e-15
2.2904e-12
7.4718e-14
4.268e-12
.0112e-11
.5424e-08
.9078e-09
.2131e-07
.7601e-08
.0134e-07

WOONNNN

e e e e e e e e e B B

Counts 2

Strand Start

+

+

+ 1

+ + + +

N

+

o4

+

+ 4+ 0+

140762377
140772241
114803065
139738867
127243516
96713628
138594031
101050391
79634571
140100119
34957484
136397286
36833272
137967268
128508551
100615536
13105703
119187504
140500106
38408991
139088096
118916083
34551430
976964
25676396
23690102
2015342
89559279
140032842
82186688

pval 2

1.8763e-14
1.8763e-14
7.7716e-16
3.5749%e-14
2.5457e-13
2.569e-09
6.9019e-11
9.5469e-09
9.5469e-09
2.5525e-08
2.5525e-08

Stop
140787022
141019076
114937688
139741797
127269709
96717654
138684992
101471479
79635869
140113813
34984679
136440641
37034476
138013025
128729656
100618986
13279589
120177348
140509812
38424444
139096955
119164601
34590121
991731
25678856
23826335
2193624
89562104
140063207
82341658

Counts 1
106
106

2-71

2 High-Throughput Sequence Analysis

6.4307e-08 45 6.7163e-07
5.585e-07 49 1.8188e-07
6.4307e-08 42 1.7861e-06
1.4079e-06 51 9.4566e-08
4.1027e-07 46 4.8461e-07
2.2131e-07 42 1.7861e-06
2.6058e-06 43 1.2894e-06
4.1027e-07 36 1.2564e-05
1.4079e-06 39 4.7417e-06
1.9155e-06 36 1.2564e-05
1.9155e-06 35 1.7377e-05
4.8199¢e-06 37 9.0815e-06
6.5537e-06 37 9.0815e-06
1.0346e-06 31 6.3417e-05
3.0371e-05 41 2.4736e-06
2.2358e-05 40 3.4251e-06
4.1245e-05 41 2.4736e-06
2.2358e-05 38 6.5629e-06
2.2358e-05 37 9.0815e-06

For instance, explore the methylation profile of the BARX1 gene, the sixth significant gene with
intergenic methylation in the previous list. The GTF formatted file ensemblmart barxl.gtf
contains structural information for this gene obtained from Ensembl using the BioMart service.

Use GTFAnnotation to load the structural information into MATLAB. There are two annotated
transcripts for this gene.

barxl = GTFAnnotation('ensemblmart barxl.gtf"')
transcripts = getTranscriptNames (barx1l)

barxl =
GTFAnnotation with properties:

FieldNames: {1x11 cell}
NumEntries: 18

transcripts =
2x1 cell array

{"ENST00000253968"'}
{'ENST00000401724"'}

Plot the DNA methylation profile for both HCT116 sample replicates with base-pair resolution.
Overlay the CpG islands and plot the exons for each of the two transcripts along the bottom of the
plot.

range = barxl.getRange;

rl = range(1l)-1000; % set the region limits

r2 = range(2)+1000;

figure

hold on

% plot high-resolution coverage of bm hctll6 1

2-72

http://www.ensembl.org/biomart/martview/

Exploring Genome-Wide Differences in DNA Methylation Profiles

hl = plot(rl:r2,getBaseCoverage(bm hctll6 1,r1,r2, 'binWidth',1),'b");
% plot high-resolution coverage of bm hctll6 2
h2 = plot(rl:r2,getBaseCoverage(bm hctll6 2,rl1,r2, 'binWidth',1),'g");

% mark the CpG islands within the [rl r2] region
for i = 1l:numel(cpgi.Starts)
if cpgi.Starts(i)>rl && cpgi.Stops(i)<r2 % is CpG island inside [rl r2]7?

px = [cpgi.Starts([1i i]) cpgi.Stops([i i])]; % x-coordinates for patch
py = [0 max(ylim) max(ylim) 0]; % y-coordinates for patch
hp = patch(px,py,'r', 'FaceAlpha',.l, 'EdgeColor','r','Tag"', 'cpgi');
end
end

[)

% mark the exons at the bottom of the axes
for 1 = l:numel(transcripts)

exons = getSubset(barxl, 'Transcript',transcripts{i}, 'Feature', 'exon');
for j = l:exons.NumEntries
px = [exons.Start([j j1);exons.Stop([j j]l)]'; % x-coordinates for patch
py = [0 11 0]-i*2-1; % y-coordinates for patch
hg = patch(px,py,'b', 'FaceAlpha',.l, 'EdgeColor','b"','Tag"', 'exon');
end
end

axis([rl r2 -numel(transcripts)*2-2 80]) % zooms-in the y-axis
fixGenomicPositionLabels(gca) % formats tick labels and adds datacursors
ylabel('Coverage')

xlabel('Chromosome 9 position')

title('High resolution coverage in the BARX1 gene')

legend([h1l h2 hp hqgl, 'HCT116-1', 'HCT116-2"', 'CpG Islands', "Exons', 'Location', 'NorthWest")

High resolution coverage in the BARX1 gene
T T

80 T T T T
HCT116-1
70 HCT118-2 —
[cps slands
[1Exans
60 [—
50 i\ | _
Q 'I
on
@40 ‘ | ‘ _
O 1l
5 o |
Q30+ it -
| h lﬁ | I
20 - | | | N ‘ ' ‘. | 4
l |] |l| rl J I
0t hﬂ J f \ 'J' 'H) | (' -
[' I) a !
0r Ul _J"“-V‘L na"f 'u!'ﬁn')ﬂ*l-f / Ao
e [— ————
1 g] 1 1 1
96,713,000 96,714,000 96,715,000 96,716,000 96,717,000 96,718,000

Chromosome 9 position

Observe the highly methylated region in the 5' promoter region (right-most CpG island). Recall that
for this gene transcription occurs in the reverse strand. More interesting, observe the highly
methylated regions that overlap the initiation of each of the two annotated transcripts (two middle
CpG islands).

2-73

2 High-Throughput Sequence Analysis

2-74

Differential Analysis of Methylation Patterns

In the study by Serre et al. another cell line is also analyzed. New cells (DICERex5) are derived from
the same HCT116 colon cancer cells after truncating the DICERI1 alleles. It has been reported in
literature [5] that there is a localized change of DNA methylation at small number of gene promoters.
In this example, you will find significant 100-bp windows in two sample replicates of the DICERex5
cells following the same approach as the parental HCT116 cells, and then you will search statistically
significant differences between the two cell lines.

The helper function getWindowCounts captures the similar steps to find windows with significant
coverage as before. getWindowCounts returns vectors with counts, p-values, and false discovery
rates for each new replicate.

bm dicer 1 = BioMap('SRR030222.bam', 'SelectRef', 'gi|224589821|ref|NC 000009.11|");
bm dicer 2 = BioMap('SRR030223.bam', 'SelectRef', 'gi|224589821|ref|NC 000009.11|");
[counts 3,pval3,fdr3] = getWindowCounts(bm dicer 1,4,w,100);

[counts 4,pval4,fdr4] = getWindowCounts(bm dicer 2,4,w,100);

w3 = fdr3<.01; % logical vector indicating significant windows in DICERex5 1

w4 = fdr4<.01; % logical vector indicating significant windows in DICERex5-2

w34 = w3 & w4; % logical vector indicating significant windows in both replicates
Number of sig windows DICERex5 1 = sum(w3)

Number of sig windows DICERex5 2 = sum(w4)

Number of sig windows DICERex5 = sum(w34)

Number of sig windows DICERex5 1

908

Number of sig windows DICERex5 2

1041

Number of sig windows DICERex5 =

759

To perform a differential analysis you use the 100-bp windows that are significant in at least one of
the samples (either HCT116 or DICERexb5).

wd = w34 | wl2; % logical vector indicating windows included in the diff. analysis

counts = [counts 1(wd) counts 2(wd) counts 3(wd) counts 4(wd)];
ws = w(wd); % window start for each row in counts

Use the function manorm to normalize the data. The PERCENTILE name-value pair lets you filter out
windows with very large number of counts while normalizing, since these windows are mainly due to
artifacts, such as repetitive regions in the reference chromosome.

counts _norm = round(manorm(counts, 'percentile',90).*100);

Use the function mattest to perform a two-sample t-test to identify differentially covered windows
from the two different cell lines.

Exploring Genome-Wide Differences in DNA Methylation Profiles

pval = mattest(counts norm(:,[1 2]),counts norm(:,[3 4]), 'bootstrap',true,...
'showhist',true, 'showplot', true);

Normal Quantile Plot of t

1DD T T T T T T T
* Quantile
O Significant
50 b O Significant ® @]
_____ Diagonal . = R
o O 3 1
E - =
© e .
3 -
P =50 T ® 0] 7
3 ®
[
3]
-100 1 7
-1580 7
@
—ZDD i i i i i i i
-40 -30 =20 -10 0 10 20 30 40

Theoretical quantile

2-75

2 High-Throughput Sequence Analysis

Histograms of t-test Results

t-scores alues
120 : : : 400 pva
350 1
100 1
300 ¢ T
sor T
250 T
o) &
T T
3 B0f 1 =200 1
i g
LL L
150 T
40t 1
100 T
20 .
‘ ‘) I III |
Lyl IR T .
-10 -5 0 5 10 0 0.5 1
tscore p-value

Create a report with the 25 most significant differentially covered windows. While creating the report
use the helper function findClosestGene to determine if the window is intergenic, intragenic, or if
it is in a proximal promoter region.

2-76

[~,ord] = sort(pval);
fprintf('Window Pos Type p-value HCT116 DICERex5\n\n"');
for i = 1:25
j = ord(i);
[~,msg] = findClosestGene(a9, [ws(j) ws(]j)+991);
fprintf('%s10d %-25s %7.61%5d%5d %5d%5d\n"',
ws(j),msg,pval(j),counts norm(j,:));
end
Window Pos Type p-value HCT116 DICERex5
140311701 Intergenic (EXD3) 0.000026 13 13 104 105
139546501 Intragenic 0.001827 21 21 91 93
10901 Intragenic 0.002671 258 257 434 428
120176801 Intergenic (ASTN2) 0.002733 266 270 155 155
139914801 Intergenic (ABCA2) 0.002980 64 63 26 25
126128501 Intergenic (CRB2) 0.003193 94 93 129 130
71939501 Prox. Promoter (FAM189A2) 0.005549 107 101 0 0
124461001 Intergenic (DAB2IP) 0.005618 77 76 39 37
140086501 Intergenic (TPRN) 0.006520 47 42 123 124
79637201 Intragenic 0.007512 52 51 32 31
136470801 Intragenic 0.007512 52 51 32 31
140918001 Intergenic (CACNA1B) 0.008115 176 169 71 68
100615901 Intergenic (FOXE1) 0.008346 262 253 123 118

Exploring Genome-Wide Differences in DNA Methylation Profiles

98221901 Intergenic (PTCH1) 0.009934 26 30 104 99
138730601 Intergenic (CAMSAP1) 0.010273 26 21 97 93
89561701 Intergenic (GAS1) 0.010336 77 76 6 12

977401 Intergenic (DMRT3) 0.010369 236 245 129 124
37002601 Intergenic (PAX5) 0.010559 133 127 207 211
139744401 Intergenic (PHPT1) 0.010869 47 46 32 31
126771301 Intragenic 0.011458 43 46 97 93
93922501 Intragenic 0.011486 34 34 149 161
94187101 Intragenic 0.011507 73 80 6 6
136044401 Intragenic 0.011567 39 34 110 105
139611201 Intergenic (FAM69B) 0.011567 39 34 110 105
139716201 Intergenic (C90rf86) 0.011832 73 72 136 130

Plot the DNA methylation profile for the promoter region of gene FAM189A2, the most significant
differentially covered promoter region from the previous list. Overlay the CpG islands and the
FAM189A2 gene.

range = getRange(getSubset(a9, 'Feature', 'FAM189A2"));

rl = range(1l)-1000;
r2 = range(2)+1000;

figure
hold on

% plot high-resolution coverage of all replicates

hl = plot(rl:r2,getBaseCoverage(bm hctll6 1,rl,r2, 'binwWidth',1),'b");
h2 = plot(rl:r2,getBaseCoverage(bm hctll6 2,rl1,r2, 'binwWidth',1),'qg"');
h3 = plot(rl:r2,getBaseCoverage(bm dicer 1,rl1,r2, 'binwWidth',1),'r");
h4 = plot(rl:r2,getBaseCoverage(bm dicer 2,rl1,r2, 'binwWidth',1),'m");

% mark the CpG islands within the [rl r2] region
for i = 1l:numel(cpgi.Starts)
if cpgi.Starts(i)>rl && cpgi.Stops(i)<r2 % is CpG island inside [rl r2]7?

px = [cpgi.Starts([i i]) cpgi.Stops([i i])]; % x-coordinates for patch
py = [0 max(ylim) max(ylim) 0O]; % y-coordinates for patch
hp = patch(px,py,'r', 'FaceAlpha', .1, 'EdgeColor','r",'Tag", 'cpgi');
end

end

% mark the gene at the bottom of the axes

px = range([1 1 2 2]);

py = [0 110]-2;

hg = patch(px,py,'b', 'FaceAlpha', .1, 'EdgeColor','b",'Tag"', 'gene');

axis([rl r1+4000 -4 30]) %

zooms-in

fixGenomicPositionLabels(gca) % formats tick labels and adds datacursors
ylabel('Coverage')
xlabel('Chromosome 9 position')
title('DNA Methylation profiles along the promoter region of the FAM189A2 gene')
legend([h1l h2 h3 h4 hp hql,...

'"HCT116-1', 'HCT116-2"', 'DICERex5-1"', 'DICERex5-2"', 'CpG Islands','FAM189A2 Gene',...

'"Location', 'NorthEast')

2-77

2 High-Throughput Sequence Analysis

2-78

DNA Methylation profiles along the promoter region of the FAM183A2 gene
T T T T T T T

30
HCT116-1
HCT116-2
25 DICERex5-1
DICERex5-2
| [JcpG Islands
20 L| [IFAM1BAAZ Gene ||
il
g 15 -
i)
]
Ot i
|
5 K‘ -
|

| sl |4 ot o e g

L 1 | | | | | |
71,938,500 71,939,000 71,939,500 71,940,000 71,940,500 71,941,000 71,941,500 71,942,000
Chromosome 9 position

Observe that the CpG islands are clearly unmethylated for both of the DICERexb5 replicates.
References

[1] Serre, D., Lee, B.H., and Ting A.H., "MBD-isolated Genome Sequencing provides a high-
throughput and comprehensive survey of DNA methylation in the human genome", Nucleic Acids
Research, 38(2):391-9, 2010.

[2] Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L., "Ultrafast and Memory-efficient
Alignment of Short DNA Sequences to the Human Genome", Genome Biology, 10(3):R25, 2009.

[3]1Li, H., et al., "The Sequence Alignment/map (SAM) Format and SAMtools", Bioinformatics,
25(16):2078-9, 2009.

[4] Gardiner-Garden, M. and Frommer, M., "CpG islands in vertebrate genomes", Journal of Molecular
Biology, 196(2):261-82, 1987.

[5] Ting, A.H., et al., "A Requirement for DICER to Maintain Full Promoter CpG Island
Hypermethylation in Human Cancer Cells", Cancer Research, 68(8):2570-5, 2008.

[6] Benjamini, Y. and Hochberg, Y., "Controlling the false discovery rate: a practical and powerful
approach to multiple testing", Journal of the Royal Statistical Society, 57(1):289-300, 1995.

Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq
Data

This example shows how to perform a genome-wide analysis of a transcription factor in the
Arabidopsis Thaliana (Thale Cress) model organism.

For enhanced performance, it is recommended that you run this example on a 64-bit platform,
because the memory footprint is close to 2 Gb. On a 32-bit platform, if you receive "Out of
memory" errors when running this example, try increasing the virtual memory (or swap space) of
your operating system or try setting the 3GB switch (32-bit Windows® XP only). For details, see
“Resolve “Out of Memory” Errors”.

Introduction

ChIP-Seq is a technology that is used to identify transcription factors that interact with specific DNA
sites. First chromatin immunoprecipitation enriches DNA-protein complexes using an antibody that
binds to a particular protein of interest. Then, all the resulting fragments are processed using high-
throughput sequencing. Sequencing fragments are mapped back to the reference genome. By
inspecting over-represented regions it is possible to mark the genomic location of DNA-protein
interactions.

In this example, short reads are produced by the paired-end Illumina® platform. Each fragment is
reconstructed from two short reads successfully mapped, with this the exact length of the fragment
can be computed. Using paired-end information from sequence reads maximizes the accuracy of
predicting DNA-protein binding sites.

Data Set

This example explores the paired-end ChIP-Seq data generated by Wang et.al. [1] using the [llumina®
platform. The data set has been courteously submitted to the Gene Expression Omnibus repository
with accession number GSM424618. The unmapped paired-end reads can be obtained from the NCBI
FTP site.

This example assumes that you:

(1) downloaded the data containing the unmapped short read and converted it to FASTQ formatted
files using the NCBI SRA Toolkit.

(2) produced a SAM formatted file by mapping the short reads to the Thale Cress reference genome,
using a mapper such as BWA [2], Bowtie, or SSAHA2 (which is the mapper used by authors of [1]),
and,

(3) ordered the SAM formatted file by reference name first, then by genomic position.

For the published version of this example, 8,655,859 paired-end short reads are mapped using the
BWA mapper [2]. BWA produced a SAM formatted file (aratha.sam) with 17,311,718 records
(8,655,859 x 2). Repetitive hits were randomly chosen, and only one hit is reported, but with lower
mapping quality. The SAM file was ordered and converted to a BAM formatted file using SAMtools [3]
before being loaded into MATLAB.

The last part of the example also assumes that you downloaded the reference genome for the Thale
Cress model organism (which includes five chromosomes). Uncomment the following lines of code to
download the reference from the NCBI repository:

2-79

https://trace.ncbi.nlm.nih.gov/Traces/index.html?run=SRR054715
https://trace.ncbi.nlm.nih.gov/Traces/index.html?run=SRR054715
https://www.ncbi.nlm.nih.gov/sra

2 High-Throughput Sequence Analysis

% getgenbank('NC 003070', 'FileFormat', 'fasta', 'tofile', 'achl.fasta');
% getgenbank('NC 003071', 'FileFormat', 'fasta', 'tofile', 'ach2.fasta');
% getgenbank('NC 003074', 'FileFormat', 'fasta', 'tofile', 'ach3.fasta');
% getgenbank('NC 003075', 'FileFormat', 'fasta', 'tofile', 'ach4.fasta');
% getgenbank('NC 003076', 'FileFormat', 'fasta', 'tofile', 'ach5.fasta');

Creating a MATLAB® Interface to a BAM Formatted File

To create local alignments and look at the coverage we need to construct a BioMap. BioMap has an
interface that provides direct access to the mapped short reads stored in the BAM formatted file, thus
minimizing the amount of data that is actually loaded to the workspace. Create a BioMap to access all
the short reads mapped in the BAM formatted file.

bm

BioMap('aratha.bam')

bm =
BioMap with properties:

SequenceDictionary: {5x1 cell}

Reference: [14637324x1 File indexed property]
Signature: [14637324x1 File indexed property]
Start: [14637324x1 File indexed property]
MappingQuality: [14637324x1 File indexed property]
Flag: [14637324x1 File indexed property]
MatePosition: [14637324x1 File indexed property]
Quality: [14637324x1 File indexed property]
Sequence: [14637324x1 File indexed property]
Header: [14637324x1 File indexed property]

NSeqs: 14637324

Name: "'

Use the getSummary method to obtain a list of the existing references and the actual number of
short read mapped to each one.

getSummary (bm)

BioMap summary:
Name: "'
Container Type: 'Data is file indexed.'
Total Number of Sequences: 14637324
Number of References in Dictionary: 5

Number of Sequences Genomic_Range
Chrl 3151847 1 30427671
Chr2 3080417 1000 19698292
Chr3 3062917 94 23459782
Chr4 2218868 1029 18585050
Chr5 3123275 11 26975502

The remainder of this example focuses on the analysis of one of the five chromosomes, Chrl. Create a
new BioMap to access the short reads mapped to the first chromosome by subsetting the first one.

bml = getSubset(bm, 'SelectReference', 'Chrl")

2-80

Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

bml =
BioMap with properties:

SequenceDictionary: 'Chrl’

Reference: [3151847x1 File indexed property]
Signature: [3151847x1 File indexed property]
Start: [3151847x1 File indexed property]
MappingQuality: [3151847x1 File indexed property]
Flag: [3151847x1 File indexed property]
MatePosition: [3151847x1 File indexed property]
Quality: [3151847x1 File indexed property]
Sequence: [3151847x1 File indexed property]

Header: [3151847x1 File indexed property]
NSeqs: 3151847
Name: "'

By accessing the Start and Stop positions of the mapped short read you can obtain the genomic
range.

x1
X2

min(getStart(bml))
max (getStop(bml))

x1
uint32

1

X2 =
uint32

30427671

Exploring the Coverage at Different Resolutions

To explore the coverage for the whole range of the chromosome, a binning algorithm is required. The
getBaseCoverage method produces a coverage signal based on effective alignments. It also allows
you to specify a bin width to control the size (or resolution) of the output signal. However internal
computations are still performed at the base pair (bp) resolution. This means that despite setting a
large bin size, narrow peaks in the coverage signal can still be observed. Once the coverage signal is
plotted you can program the figure's data cursor to display the genomic position when using the
tooltip. You can zoom and pan the figure to determine the position and height of the ChIP-Seq peaks.

[cov,bin] = getBaseCoverage(bml,x1,x2, 'binWidth',1000, 'binType', 'max"');
figure

plot(bin,cov)
axis([x1,x2,0,100])
fixGenomicPositionLabels
xlabel('Base position')

sets the axis limits
formats tick labels and adds datacursors

%
%

2-81

2 High-Throughput Sequence Analysis

2-82

Depth

ylabel('Depth')
title('Coverage in Chromosome 1')

Coverage in Chromosome 1
100 T T T T T T

80 T

Tor 7

50 N

40

30 -

20

10

0 I l i i I
5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000

Base position

It is also possible to explore the coverage signal at the bp resolution (also referred to as the pile-up
profile). Explore one of the large peaks observed in the data at position 4598837.

pl = 4598837-1000;

p2 = 4598837+1000;

figure

plot(pl:p2,getBaseCoverage(bml,pl,p2))
xlim([pl,p2]1) % sets the x-axis limits

fixGenomicPositionLabels % formats tick labels and adds datacursors
xlabel('Base position')

ylabel('Depth')

title('Coverage in Chromosome 1')

Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

Coverage in Chromosome 1
900 T T T T T T T T

BOO rh|| T

700 - ‘ | b

600 |- | | -

Depth

300 | | N
200 | .

100 - | | 7

| | | | = L _.l—nl L._I_ L L |
4,598,000 4,598,200 4,598,400 4,598,600 4,598,800 4,599,000 4,589,200 4,599,400 4,599,600 4,599,800
Base position

Identifying and Filtering Regions with Artifacts

Observe the large peak with coverage depth of 800+ between positions 4599029 and 4599145.
Investigate how these reads are aligning to the reference chromosome. You can retrieve a subset of
these reads enough to satisfy a coverage depth of 25, since this is sufficient to understand what is
happening in this region. Use getIndex to obtain indices to this subset. Then use
getCompactAlignment to display the corresponding multiple alignment of the short-reads.

i = getIndex(bml,4599029,4599145, 'depth',25);
bmx = getSubset(bml,i, 'inmemory', false)
getCompactAlignment (bmx,4599029,4599145)

bmx =
BioMap with properties:

SequenceDictionary: 'Chrl’

Reference: [62x1 File indexed property]
Signature: [62x1 File indexed property]
Start: [62x1 File indexed property]
MappingQuality: [62x1 File indexed propertyl
Flag: [62x1 File indexed property]
MatePosition: [62x1 File indexed property]
Quality: [62x1 File indexed property]
Sequence: [62x1 File indexed property]
Header: [62x1 File indexed property]

NSeqs: 62

Name: "'

ans =

2-83

2 High-Throughput Sequence Analysis

2-84

35x1

"AGTT AATCAAATAGAAAGCCCCGAGGGCGCCATATCCTAGGCGC AAACTATGTGATTGAATAAATCCTCCTCTATCTGTTGCGG
"AGTGC TCAAATAGAAAGCCCCGAGGGCGCCATATTCTAGGAGCCC
CCCGAGGGCGCCATATTCTAGGAGCCCAAACTATGTGATT
TTCTAGGAGCCCAAACTATGTGATTGAATAAATCCTCCTC
AAGGAGCCCAAAATATGTGATTGAATAAATCCACCTCTAT
TAGGAGCCCAAACTATGTGATTGAATAAATCCTCCTCTAT

'A
‘A
'A
'A

17 char array

GTTCAA
GTTCAATCAAATAGAAAGC
GTT
GTACAATCAAATAGAAAGCCCCGAGGGCGCCATA

'CGTACAATCAAATAGAAAGCCCCGAGGGCGCCATATTC GGAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCT
'CGTACAATCAAATAGAAAGCCCCGAGGGCGCCATATTC GGAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCT
'CGTACAATCAAATAGAAAGCCCCGAGGGCGCCATATTC GGAGCCCAAGCTATGTGATTGAATAAATCCTCCTCTATCT
'CGTACAATCAAATAGAAAGCCCCGAGGGCGCCATATTC GGAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCT
"AGTTCAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTA GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG
'GATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTA GAGCCCAAACTATGTGATTGAATAAATCTTCCTCTATCTG
'GATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTA GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG
'GATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTA GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG
'GATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTA GAGCCCAAATTATGTGATTGAATAAATCCTCCTCTATCTG

ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG
ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG
ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG
ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG
ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTCG
ATACAATCAAATAGAAAGCCCCGGGGGCGCCATATTCTAG
ATTGAGTCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG
ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG
ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG
ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG

CAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAGGAG
CAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAGGAG

CCCAAACTATGTGATTGAATAAATCCTCCTCTATCTGTTG
CACAAACTATGTGATTGAATAAATCCTCCTCTATCTGTTG
CCAAACTATGTGATTGAATAAATCCTCCTCTATCTGTTGC

GAATAAATCCTCCTCTATCTGTTGCGGGTCG!
TATCTGTTGCGGGTCG!

TAGGAGCCCAAACTATGTGATTGAATAAATCCTCCTCTAT
TAGGAGCCCAAACTATGCCATTGAATAAATCCTCCGCTAT

GGAGCCCAAGCTATGTGATTGAATAAATCCTCCTCTATCT

GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG
GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG
GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG
GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG
GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG

In addition to visually confirming the alignment, you can also explore the mapping quality for all the
short reads in this region, as this may hint to a potential problem. In this case, less than one percent
of the short reads have a Phred quality of 60, indicating that the mapper most likely found multiple
hits within the reference genome, hence assigning a lower mapping quality.

figure
i=ge
hist(d

tIndex(bml,4599029,4599145);
ouble(getMappingQuality(bml,i)))

title('Mapping Quality of the reads between 4599029 and 4599145')

xlabel
ylabel

('Phred Quality Score')
('Number of Reads')

Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

Mapping Quality of the reads between 4599029 and 4599145

1500

-
=
=
e
T

Mumber of Reads

500

25 30

40

45

50

Phred Quality Score

65

60

Most of the large peaks in this data set occur due to satellite repeat regions or due to its closeness to
the centromere [4], and show characteristics similar to the example just explored. You may explore
other regions with large peaks using the same procedure.

To prevent these problematic regions, two techniques are used. First, given that the provided data set
uses paired-end sequencing, by removing the reads that are not aligned in a proper pair reduces the
number of potential aligner errors or ambiguities. You can achieve this by exploring the flag field of
the SAM formatted file, in which the second less significant bit is used to indicate if the short read is

mapped in a proper pair.

i = find(bitget(getFlag(bml),b2));
bml filtered = getSubset(bml,i)

bml filtered =

BioMap with properties:

SequenceDictionary:
Reference:
Signature:

Start:
MappingQuality:
Flag:
MatePosition:
Quality:
Sequence:

"Chrl’

3040724x1
3040724x1
3040724x1
3040724x1
3040724x1
3040724x1
3040724x1

[
[
[
[
[
[
[
[3040724x1

File
File
File
File
File
File
File
File

indexed
indexed
indexed
indexed
indexed
indexed
indexed
indexed

propertyl
propertyl
propertyl
propertyl
property]
property]
property]
property]

2-85

2 High-Throughput Sequence Analysis

2-86

Header: [3040724x1 File indexed property]
NSeqs: 3040724
Name: "'

Second, consider only uniquely mapped reads. You can detect reads that are equally mapped to
different regions of the reference sequence by looking at the mapping quality, because BWA assigns a
lower mapping quality (less than 60) to this type of short read.

i = find(getMappingQuality(bml filtered)==60);
bml filtered = getSubset(bml filtered,1i)

bml filtered =
BioMap with properties:

SequenceDictionary: 'Chrl’

Reference: [2313252x1 File indexed property]
Signature: [2313252x1 File indexed property]
Start: [2313252x1 File indexed property]
MappingQuality: [2313252x1 File indexed property]
Flag: [2313252x1 File indexed property]
MatePosition: [2313252x1 File indexed property]
Quality: [2313252x1 File indexed property]
Sequence: [2313252x1 File indexed property]

Header: [2313252x1 File indexed property]
NSeqs: 2313252
Name: "'

Visualize again the filtered data set using both, a coarse resolution with 1000 bp bins for the whole
chromosome, and a fine resolution for a small region of 20,000 bp. Most of the large peaks due to
artifacts have been removed.

[cov,bin] = getBaseCoverage(bml filtered,x1,x2, 'binWidth',1000, 'binType', 'max"');
figure

plot(bin,cov)
axis([x1,x2,0,100])
fixGenomicPositionLabels
xlabel('Base Position')
ylabel('Depth')
title('Coverage in Chromosome 1 after Filtering')

sets the axis limits
formats tick labels and adds datacursors

%
%

pl = 24275801-10000;

p2 = 24275801+10000;

figure

plot(pl:p2,getBaseCoverage(bml filtered,pl,p2))
xlim([pl,p2]) % sets the x-axis limits

fixGenomicPositionLabels % formats tick labels and adds datacursors
xlabel('Base Position')

ylabel('Depth')

title('Coverage in Chromosome 1 after Filtering')

Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

Coverage in Chromosome 1 after Filtering
100 T T T T T T

90 1

7o T

60 - —

Depth

40 - T

30 —

5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000
Base Position

Coverage in Chromosome 1 after Filtering
45 T T T T T T T T T

=]

Wi, AN)

24,266,000 24,268,000 24,270,000 24,272,000 24,274,000 24,276,000 24,278,000 24,280,000 24,282,000 24,284,000
Base Position

Recovering Sequencing Fragments from the Paired-End Reads

In Wang's paper [1] it is hypothesized that paired-end sequencing data has the potential to increase
the accuracy of the identification of chromosome binding sites of DNA associated proteins because
the fragment length can be derived accurately, while when using single-end sequencing it is
necessary to resort to a statistical approximation of the fragment length, and use it indistinctly for all
putative binding sites.

2-87

2 High-Throughput Sequence Analysis

2-88

Use the paired-end reads to reconstruct the sequencing fragments. First, get the indices for the
forward and the reverse reads in each pair. This information is captured in the fifth bit of the flag
field, according to the SAM file format.

fow_idx
rev_idx

find(~bitget(getFlag(bml filtered),5));
find(bitget(getFlag(bml filtered),5));

SAM-formatted files use the same header strings to identify pair mates. By pairing the header strings
you can determine how the short reads in BioMap are paired. To pair the header strings, simply order
them in ascending order and use the sorting indices (hf and hr) to link the unsorted header strings.

[~,hf] = sort(getHeader(bml filtered, fow idx));
[~,hr] = sort(getHeader(bml filtered, rev idx));
mate idx = zeros(numel(fow idx),1);

mate idx(hf) = rev_idx(hr);

Use the resulting fow idx and mate_ idx variables to retrieve pair mates. For example, retrieve the
paired-end reads for the first 10 fragments.

for j = 1:10

disp(getInfo(bml filtered, fow idx(j)))

disp(getInfo(bml filtered, mate idx(j)))
end
SRR054715.sra.6849385 163 20 60 40M AACCCTAAACCTCTGAATCCTTAATCCCTAAATCCCTAAA
SRR054715.sra.6849385 83 229 60 40M CCTATTTCTTGTGGTTTTCTTTCCTTCACTTAGCTATGGA
SRR054715.sra.6992346 99 20 60 40M AACCCTAAACCTCTGAATCCTTAATCCCTAAATCCCTAAA
SRR054715.sra.6992346 147 239 60 40M GTGGTTTTCTTTCCTTCACTTAGCTATGGATGGTTTATCT
SRR054715.sra.8438570 163 47 60 40M CTAAATCCCTAAATCTTTAAATCCTACATCCATGAATCCC
SRR054715.sra.8438570 83 274 60 40M TATCTTCATTTGTTATATTGGATACAAGCTTTGCTACGAT
SRR054715.sra.1676744 163 67 60 40M ATCCTACATCCATGAATCCCTAAATACCTAATCCCCTAAA
SRR054715.sra.1676744 83 283 60 40M TTGTTATATTGGATACAAGCTTTGCTACGATCTACATTTG
SRR054715.sra.6820328 163 73 60 40M CATCCATGAATCCCTAAATACCTAATTCCCTAAACCCGAA
SRR054715.sra.6820328 83 267 60 40M GTTGGTGTATCTTCATTTGTTATATTGGATACGAGCTTTG
SRR054715.sra. 1559757 163 103 60 40M TAAACCCGAAACCGGTTTCTCTGGTTGAAACTCATTGTGT
SRR054715.sra. 1559757 83 311 60 40M GATCTACATTTGGGAATGTGAGTCTCTTATTGTAACCTTA
SRR054715.sra.5658991 163 103 60 40M CAAACCCGAAACCGGTTTCTCTGGTTGAAACTCATTGTGT
SRR054715.sra.5658991 83 311 60 40M GATCTACATTTGGGAATGTGAGTCTCTTATTGTAACCTTA
SRR054715.sra.4625439 163 143 60 40M ATATAATGATAATTTTAGCGTTTTTATGCAATTGCTTATT
SRR054715.sra.4625439 83 347 60 40M CTTAGTGTTGGTTTATCTCAAGAATCTTATTAATTGTTTG
SRRO54715.sra.1007474 163 210 60 40M ATTTGAGGTCAATACAAATCCTATTTCTTGTGGTTTGCTT
SRRO54715.sra.1007474 83 408 60 40M TATTGTCATTCTTACTCCTTTGTGGAAATGTTTGTTCTAT
SRRO54715.sra.7345693 99 213 60 40M TGAGGTCAATACAAATCCTATTTCTTGTGGTTTTCTTTCT
SRR054715.sra.7345693 147 393 60 46M TTATTTTTGGACATTTATTGTCATTCTTACTCCTTTGGGG

Use the paired-end indices to construct a new BioMap with the minimal information needed to
represent the sequencing fragments. First, calculate the insert sizes.

J
K
L

getStop(bml filtered, fow idx);
getStart(bml filtered, mate idx);
K-3-1;

Obtain the new signature (or CIGAR string) for each fragment by using the short read original
signatures separated by the appropriate number of skip CIGAR symbols (N).

n = numel
cigars =
fori=1

(L);

n

cell(n,1);

BI
0

Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

cigars{i} = sprintf('sdN' ,L(1i));
end
cigars = strcat(getSignature(bml filtered, fow idx),...
cigars, ...
getSignature(bml filtered, mate_idx));

Reconstruct the sequences for the fragments by concatenating the respective sequences of the
paired-end short reads.

seqs = strcat(getSequence(bml filtered, fow idx),...
getSequence(bml filtered, mate_idx));

Calculate and plot the fragment size distribution.

J getStart(bml filtered, fow idx);

K getStop(bml filtered,mate idx);

L=K-J+1;

figure

hist(double(L),100)

title(sprintf('Fragment Size Distribution\n %d Paired-end Fragments Mapped to Chromosome 1',n))
xlabel('Fragment Size')

ylabel('Count')

Fragment Size Distribution
. 14156626 Paired-end Fragments Mapped to Chromosome 1
D T T T T T T T

Count
n

D 1 i
0 50 100 150 200 250 300 350 400

Fragment Size

Construct a new BioMap to represent the sequencing fragments. With this, you will be able explore
the coverage signals as well as local alignments of the fragments.

bml fragments = BioMap('Sequence',seqs, 'Signature',cigars, 'Start',J)

2-89

2 High-Throughput Sequence Analysis

bml fragments =
BioMap with properties:

SequenceDictionary: {0x1 cell}
Reference: {0x1 cell}
Signature: {1156626x1 cell}

Start: [1156626x1 uint32]
MappingQuality: [0x1 uint8]
Flag: [0x1 uintl6]
MatePosition: [0Ox1 uint32]
Quality: {0x1 cell}
Sequence: {1156626x1 cell}
Header: {0x1 cell}
NSeqs: 1156626
Name: "'

Exploring the Coverage Using Fragment Alignments

Compare the coverage signal obtained by using the reconstructed fragments with the coverage signal
obtained by using individual paired-end reads. Notice that enriched binding sites, represented by
peaks, can be better discriminated from the background signal.

cov_reads = getBaseCoverage(bml filtered,x1,x2, 'binWidth',1000, 'binType', 'max"');
[cov_fragments,bin] = getBaseCoverage(bml fragments,xl,x2, 'binWidth',1000, 'binType"', 'max"');

figure
plot(bin,cov_reads,bin,cov_fragments)
x1lim([x1,x2]1) % sets the x-axis limits

fixGenomicPositionLabels % formats tick labels and adds datacursors
xlabel('Base position')

ylabel('Depth')

title('Coverage Comparison')

legend('Short Reads', 'Fragments')

2-90

Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

Coverage Comparison
140 T T T

Short Reads

Fragments
120 - 4

100 _

Depth

[1

40 - 1

1 | Lk, i, et L e b M [l 1 I
5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000
Base position

Perform the same comparison at the bp resolution. In this dataset, Wang et.al. [1] investigated a basic
helix-loop-helix (bHLH) transcription factor. bHLH proteins typically bind to a consensus sequence
called an E-box (with a CANNTG motif). Use fastaread to load the reference chromosome, search for
the E-box motif in the 3' and 5' directions, and then overlay the motif positions on the coverage
signals. This example works over the region 1-200,000, however the figure limits are narrowed to a
3000 bp region in order to better depict the details.

l .

pl ;
200000;

p2

cov_reads = getBaseCoverage(bml filtered,pl,p2);
[cov_fragments,bin] = getBaseCoverage(bml fragments,pl,p2);

chrl = fastaread('achl.fasta');

mpl = regexp(chrl.Sequence(pl:p2), 'CA..TG"')+3+pl;
mp2 = regexp(chrl.Sequence(pl:p2), 'GT..AC")+3+pl;
motifs = [mpl mp2];

figure

plot(bin,cov_reads,bin,cov_fragments)

hold on

plot([1;1;1]1*motifs, [0;max(ylim);NaN],'r")
x1im([111000 114000]) % sets the x-axis limits

fixGenomicPositionLabels % formats tick labels and adds datacursors
xlabel('Base position')

ylabel('Depth')

title('Coverage Comparison')

legend('Short Reads', 'Fragments', 'E-box motif')

2-91

2 High-Throughput Sequence Analysis

Coverage Comparison

35 T T T T T I I
Short Reads
Fragments
ar E-box motif |7
25 T
20 - T

Depth

5L A L N 1 |r LL Ir\r M| R J
P],JL! | 71| 1 # e |
10 _”nI _hJ”'F J'|mH]HL 1,

L, _Jlj[U1 I -
i AR A Akt

__|_

—_—

—.C

Observe that it is not possible to associate each peak in the coverage signals with an E-box motif. This
is because the length of the sequencing fragments is comparable to the average motif distance,
blurring peaks that are close. Plot the distribution of the distances between the E-box motif sites.

motif sep = diff(sort(motifs));

figure

hist(motif sep(motif sep<500),50)

title('Distance (bp) between adjacent E-box motifs')
xlabel('Distance (bp)"')

ylabel('Counts"')

2-92

Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

Distance (bp) between adjacent E-box motifs

120 T

100

80

G0

Counts

40

20

0 50 100 150 200 250 300 350 400 450 500
Distance (bp)

Finding Significant Peaks in the Coverage Signal

Use the function mspeaks to perform peak detection with Wavelets denoising on the coverage signal
of the fragment alignments. Filter putative ChIP peaks using a height filter to remove peaks that are
not enriched by the binding process under consideration.

putative peaks = mspeaks(bin,cov_fragments, 'noiseestimator',20,...
"heightfilter',10, 'showplot',true);

hold on

legend('off")

plot([1;1;1]1*motifs(motifs>pl & motifs<p2),[0;max(ylim);NaN],'r")

x1im([111000 114000]) % sets the x-axis limits

fixGenomicPositionLabels % formats tick labels and adds datacursors

legend('Coverage from Fragments', 'Wavelet Denoised Coverage', 'Putative ChIP peaks', 'E-box Motifs

xlabel('Base position')

ylabel('Depth')

title('ChIP-Seq Peak Detection')

2-93

2 High-Throughput Sequence Analysis

2-94

ChIP-Seq Peak Detection
T

I [T [T |
30 1 1 1 Coverage from Fragments |4
Wavelet Dencised Coverage
% Putative ChIP peaks

25 L | | | E-box Matifs -

20 - - { - 1

P ik G M N
v _U[Hl _.-ﬂrt]ﬂr | Hmm“ by | —f \rﬂ fl b .
ra N L

Depth

L I

0E 1 | 1 1 L |
111,000 111,500 112,000 112 500 113,000 113,500 114,000
Base position

Use the knnsearch function to find the closest motif to each one of the putative peaks. As expected,
most of the enriched ChIP peaks are close to an E-box motif [1]. This reinforces the importance of
performing peak detection at the finest resolution possible (bp resolution) when the expected density
of binding sites is high, as it is in the case of the E-box motif. This example also illustrates that for
this type of analysis, paired-end sequencing should be considered over single-end sequencing [1].

h = knnsearch(motifs',putative peaks(:,1));

distance = putative peaks(:,1)-motifs(h(:))";

figure

hist(distance(abs(distance)<200),50)

title('Distance to Closest E-box Motif for Each Detected Peak')
xlabel('Distance (bp)"')

ylabel('Counts"')

Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

Distance to Closest E-box Motif for Each Detected Peak
25 T T T T T T T

20

15

Counts

10

0
200 -150 -100 -50 0 50 100 150 200
Distance (bp)
References

[1] Wang, Congmao, Jie Xu, Dasheng Zhang, Zoe A Wilson, and Dabing Zhang. “An Effective Approach
for Identification of in Vivo Protein-DNA Binding Sites from Paired-End ChIP-Seq Data.” BMC
Bioinformatics 11, no. 1 (2010): 81.

[2] Li, H., and R. Durbin. “Fast and Accurate Short Read Alignment with Burrows-Wheeler
Transform.” Bioinformatics 25, no. 14 (July 15, 2009): 1754-60.

[3]Li, H., B. Handsaker, A. Wysoker, T. Fennell,]J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin,
and 1000 Genome Project Data Processing Subgroup. “The Sequence Alignment/Map Format
and SAMtools.” Bioinformatics 25, no. 16 (August 15, 2009): 2078-79.

[4] Jothi, R., S. Cuddapah, A. Barski, K. Cui, and K. Zhao. “Genome-Wide Identification of in Vivo
Protein-DNA Binding Sites from ChIP-Seq Data.” Nucleic Acids Research 36, no. 16 (August 1,
2008): 5221-31.

[5] Hoffman, Brad G, and Steven] M Jones. “Genome-Wide Identification of DNA-Protein Interactions
Using Chromatin Immunoprecipitation Coupled with Flow Cell Sequencing.” Journal of
Endocrinology 201, no. 1 (April 2009): 1-13.

[6] Ramsey, Stephen A., Theo A. Knijnenburg, Kathleen A. Kennedy, Daniel E. Zak, Mark Gilchrist,
Elizabeth S. Gold, Carrie D. Johnson, et al. “Genome-Wide Histone Acetylation Data Improve
Prediction of Mammalian Transcription Factor Binding Sites.” Bioinformatics 26, no. 17
(September 1, 2010): 2071-75.

2-95

2 High-Throughput Sequence Analysis

See Also
BioMap | getBaseCoverage | getgenbank | getSummary

Related Examples

. “Identifying Differentially Expressed Genes from RNA-Seq Data” on page 2-32
. “Count Features from NGS Reads” on page 2-23
. “Exploring Genome-Wide Differences in DNA Methylation Profiles” on page 2-58

2-96

Working with lllumina/Solexa Next-Generation Sequencing Data

Working with lllumina/Solexa Next-Generation Sequencing
Data

This example shows how to read and perform basic operations with data produced by the lllumina®/
Solexa Genome Analyzer®.

Introduction

During an analysis run with the Genome Analyzer Pipeline software, several intermediate files are
produced. In this example, you will learn how to read and manipulate the information contained in
sequence files (_ sequence. txt).

Reading _sequence.txt (FASTQ) Files

The sequence. txt files are FASTQ-formatted files that contain the sequence reads and their
quality scores, after quality trimming and filtering. You can use the fastqginfo function to display a
summary of the contents ofa sequence. txt file, and the fastqread function to read the contents
of the file. The output, reads, is a cell array of structures containing the Header, Sequence and
Quality fields.

filename = 'ilmnsolexa sequence.txt';
info = fastqinfo(filename)
reads = fastqread(filename)

info =
struct with fields:

Filename: 'ilmnsolexa sequence.txt'
FilePath: 'C:\TEMP\Bdoc23a 2213998 3568\1b570499\37\tp04el505b\bioinfo-ex25447385"
FileModDate: '06-May-2009 16:02:48'
FileSize: 30124
NumberOfEntries: 260

reads =
1x260 struct array with fields:

Header
Sequence
Quality

Because there is one sequence file per tile, it is not uncommon to have a collection of over 1,000 files
in total. You can read the entire collection of files associated with a given analysis run by
concatenating the sequence.txt files into a single file. However, because this operation usually
produces a large file that requires ample memory to be stored and processed, it is advisable to read
the content in chunks using the blockread option of the fastqread function. For example, you can
read the first M sequences, or the last M sequences, or any M sequences in the file.

M
N

150;
info.NumberOfEntries;

2-97

2 High-Throughput Sequence Analysis

readsFirst = fastqread(filename, 'blockread', [1 M])
readsLast = fastqread(filename, 'blockread', [N-M+1, NJ)
readsFirst =
1x150 struct array with fields:
Header
Sequence
Quality
readsLast =
1x150 struct array with fields:
Header
Sequence
Quality
Surveying the Length Distribution of Sequence Reads

Once you load the sequence information into your workspace, you can determine the number and
length of the sequence reads and plot their distribution as follows:

seqs = {reads.Sequence};
readsLen = cellfun(@length, seqs);

figure(); hist(readsLen);

xLlabel('Number of bases'); ylabel('Number of sequence reads');
title('Length distribution of sequence reads')

2-98

Working with lllumina/Solexa Next-Generation Sequencing Data

Length distribution of sequence reads
:‘I-DD T T T T T T T T T T

250 7

[

—

]
T
1

Mumber of sequence reads
i b
= n
= =
T T
1 i

D i i i i i i i i i
31 32 33 34 35 36 37 38 39 40

Mumber of bases
As expected, in this example all sequence reads are 36 bp long.

Surveying the Base Composition of the Sequence Reads

You can also examine the nucleotide composition by surveying the number of occurrences of each
base type in each sequence read, as shown below:

nt={IAI’ ICI’ IGI, ITI};
pos = cell(4,N);

for i = 1:4
pos(i,:) = strfind(seqs, nt{i});
end
count = zeros(4,N);
for i = 1:4
count(i,:) = cellfun(@length, pos(i,:));
end
%=== plot nucleotide distribution
figure();
subplot(2,2,1); hist(count(l,:)); title('A'); ylabel('Number of sequence reads');
subplot(2,2,2); hist(count(2,:)); title('C');
subplot(2,2,3); hist(count(3,:)); title('G'); xlabel('Occurrences'); ylabel('Number of sequence
subplot(2,2,4); hist(count(4,:)); title('T'); xlabel('Occurrences');

figure(); hist(count');

2-99

2 High-Throughput Sequence Analysis

xlabel('Occurrences');

ylabel('Number of sequence reads');
legend('A', 'C', 'G', 'T");

title('Base distribution by nucleotide type');

—_

A c
80

=
=

Number of sequence reads
(4
=

=

=
=

20 30 40

o
=

(=]
=

[
(=]

Mumber of sequence reads
iy
=

=

0 5 10 15 0 10 20 30
Clcourrences Clcourrences

2-100

Working with lllumina/Solexa Next-Generation Sequencing Data

Base distribution by nucleotide type

120 T T T
_ [
N C
100 s |
[T
[72]
-
3
L 80 .
4]
[]
-
da
=0
g 60 1 i
[£2]
b=
o
2 a0 1 1
|
=
20 1
0 | | | | = |I_I =l [m
0 5 10 15 20 25 30 35 40

Occurrences

Surveying the Quality Score Distribution

Each sequence read in the sequence. txt file is associated with a score. The score is defined as SQ
=-10 *1og10 (p / (1-p)), where p is the probability error of a base. You can examine the quality scores
associated with the base calls by converting the ASCII format into a numeric representation, and then
plotting their distribution, as shown below:

sq = {reads.Quality}; % in ASCII format

SQ = cellfun(@(x) double(x)-64, {reads.Quality}, 'UniformOutput', false); % in integer format
%=== average, median and standard deviation

avgSQ = cellfun(@mean, SQ);

medSQ = cellfun(@median, SQ);

stdSQ = cellfun(@std, SQ);

%=== plot distribution of median and average quality

figure();

subplot(1,2,1); hist(medSQ);
xlabel('Median Score SQ'); ylabel('Number of sequence reads');
subplot(1,2,2); boxplot(avgSQ); ylabel('Average Score SQ');

2-101

2 High-Throughput Sequence Analysis

2-102

2580 T T T 296 F T =
|
26 I -
200
241 :
i |
E |
m
g o222t I i
§150 @ L
S g 20t ¥ 1
3 tA
17 [a}]
s AL -
E 100 %
E 16 :
i ;
50 147]
12+ :I: 1
D i
10 15 20 25 30 1

Median Score 501

Converting Quality Scores Between Standards

The quality scores found in Solexa/Illumina files are asymptotic, but not identical, to the quality
scores used in the Sanger standard (Phred-like scores, Q). Q is defined as -10 * 1og10 (p), where p is
the error probability of a base. For example, if the quality score of a base is Q = 20, then p = 10
~(-20/10) = .01. This means that there is one wrong base call every 100 base calls with a score 0f20.

While Phred quality scores are positive integers, Solexa/Illumina quality scores can be negative. We
can convert Solexa quality scores into Phred quality scores using the following code:

%=== convert from Solexa to Sanger standard

Q = cellfun(@(x) floor(.499 + 10 * loglO(1l+ 10 .~ (x/10))), SQ,
'"UniformOutput', false); % in integer format

g = cellfun(@(x) char(x+33), Q, 'UniformOutput', false); % in ascii format

sanger = q(l 3)"
solexa = sq(1l:3)"
sanger =

3x1 cell array

{'>>>>>55555>> 1> 1555555555555 78%7 . 1-%4 ' }
{'>>>5>55555>> 1 >55>5>>>>>> 1 17>5><1; 1486, ' }
{'>>>>:1>>>>>7>5>>>>>5>>>>>7>5 ,+'69 ' (-%' }

Working with lllumina/Solexa Next-Generation Sequencing Data

solexa =
3x1 cell array

11
11
11

1]
1]
11

11111 1111111]1VCHVMPLAS ' }
111111 T1T1YPVIT][PZPICCK'}
Y1111 J1111VITMIEUXEFLA'}

T

1]
1]
11

Filtering and Masking According to Quality Scores

Signal purity filtering has already been applied to the sequences in the sequence. txt files. You
can perform additional filtering, for example by considering only those sequence reads whose bases
have all quality scores above a specific threshold:

%=== find sequence reads whose bases all have quality above threshold
len = 36;

gt = 10; % minimum quality threshold

a cellfun(@(x) x > qt, SQ, 'UniformOutput', false);

b cellfun(@sum, a);

cl = find(b == len);

nl= numel(cl); % number of sequence reads passing the filter

disp([num2str(nl) ' sequence reads have all bases above threshold ' num2str(qt)]);

30 sequence reads have all bases above threshold 10

Alternatively, you can consider only those sequence reads that have less than a given number of bases
with quality scores below threshold:

%=== find sequence reads having less than M bases with quality below threshold
M = 5; % max number of bases with poor quality

a = cellfun(@(x) x <= qt, SQ, 'UniformOutput', false);

b = cellfun(@sum, a);

c2 = find(b <= M);

n2 = numel(c2); % number of sequence reads passing the filter

disp([num2str(n2) ' sequence reads have less than ' num2str(M) ' bases below threshold ' num2str
235 sequence reads have less than 5 bases below threshold 10
Finally, you can apply a lower case mask to those bases that have quality scores below threshold:

seq = reads(1l).Sequence

mseq = seq;
qt2 = 20; % quality threshold
mask = SQ{1} < qt;

mseq(mask) = lower(seq(mask))
seq =

"GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT

mseq =

2-103

2 High-Throughput Sequence Analysis

"GGACTTTGTAGGATACCCTCGCTTTCCTtcTCCTgT!

Summarizing Read Occurrences

To summarize read occurrences, you can determine the number of unique read sequences and their
distribution across the data set. You can also identify those sequence reads that occur multiple times,
often because they correspond to adapters or primers used in the sequencing process.

%=== determine read frequency

[uReads,~,n] = unique({reads.Sequence});

numUnique = numel(uReads)

readFreq = accumarray(n(:),1);

figure(); hist(readFreq, unique(readFreq));
xlabel('Occurrences'); ylabel('Number of sequence reads');
title('Read occurrences');

%=== identify multiply-occurring sequence reads
d = readFreq > 1;

dupReads = uReads(d)'

dupFreq = readFreq(d)"

numUnique =

250

dupReads =
9x1 cell array

{"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' }
{'GATTTTATTGGTATCAGGGTTAATCGTGCCAAGAAA"'}
{'GCATGGGTGATGCTGGTATTAAATCTGCCATTCAAG'}
{'GGGATGAACATAATAAGCAATGACGGCAGCAATAAA'}
{'GGGGGAGCACATTGTAGCATTGTGCCAATTCATCCA'}
{'GGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA"}
{'GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT "}
{'GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC "}
{'GTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAG'}

dupFreq =

2 2 2 2 2 2 3 2 2

2-104

Working with lllumina/Solexa Next-Generation Sequencing Data

Read occurrences
250 . . :

200

150

100

Mumber of sequence reads

50

1 2 3
Occurrences

Identifying Homopolymers Artifacts

[llumina/Solexa sequencing may produce false polyA at the edges of a tile. To identify these artifacts,
you need to identify homopolymers, that is, sequence reads composed of one type of nucleotide only.
In the data set under consideration, there are two homopolymers, both of which are polyA.

%=== find homopolymers
pc = (count ./ len) * 100;
[homopolType, homopolIndex] = find(pc == 100);
homopolIndex
homopol = {reads(homopolIndex).Sequence}"'
homopolIndex =
251
257
homopol =

2x1 cell array

{"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA }
{"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' }

2-105

2 High-Throughput Sequence Analysis

Similarly, you can identify sequence reads that are near-matches to homopolymers, that is, sequence
reads that are composed almost exclusively of one nucleotide type.

%=== find near-homopolymers
[nearhomopolType, nearhomopolIndex] = find(pc < 100 & pc > 85); % more than 85% same base
nearhomopolIndex

nearHomopol = {reads(nearhomopolIndex).Sequence}'

nearhomopolIndex =
4
243
nearHomopol =
2x1 cell array
{'AAAAACATAAAAAAAAAAATAAAAAAACAAAAAAAA' }
{'AAAAAAATAAAAAAAAAAATAAAAAAAAATTAAAAA' }
Writing Data to FASTQ Format

Once you have processed and analyzed your data, it might be convenient to save a subset of
sequences in a separate FASTQ file for future consideration. For this purpose you can use the
fastgwrite function.

2-106

Bioinformatics Pipeline SplitDimension

Bioinformatics Pipeline SplitDimension

Some of the blocks in a bioinformatics pipeline operate on their input data arrays as one single input
while other blocks can operate on individual elements or slices of the input data array independently.
The SplitDimension property of a block input controls how to split the block input data (or input
array) across multiple runs of the same block in a pipeline. In other words, SplitDimension allows
you to control how to parallelize independent runs of the same block (with a different input for each
run).

Specify SplitDimension to Select Which Input Array Dimensions to
Split

By default, the values of the input array are passed unchanged (that is, there is no dimensional
splitting of the input data) to the run method of the block, which means that the block runs once for
all of the input data.

You can specify a vector of integers to indicate which dimensions (such the row or column dimension)
of the input array to split and pass to the block run method. By splitting the input data, you are
specifying how many times you want to run the same block with different inputs.

For example, the bioinfo.pipeline.blocks.SeqSplit block can apply the same trimming
operation on an array of input FASTQ files. To specify that SeqTrim runs on each input file in the
array independently, set the SplitDimension property of the block input to a specific dimension
(such as 1 for the row dimension or 2 for the column dimension of the array).

Specify "all" to pass all elements of the input array to the run method of the block independently.
For instance, if there are n elements, the block runs n times independently.

For an example of how to use SplitDimension, see “Split Input SAM files and Assemble
Transcriptomes Using Bioinformatics Pipeline” on page 2-109.

Note If you are running the “Bioinformatics Toolbox Software Support Packages” on page 2-21 (such
as Bowtie2, BWA, or Cufflinks) remotely, ensure that these support packages are installed in the
remote clusters that you are running the pipeline.

Provide Compatible Array sizes

A block can have different split dimensions for each input (port), but inputs that share split
dimensions must have compatible sizes. As with binary operations on MATLAB arrays, two inputs
have a compatible size for a dimension if the size of the inputs is the same or one of the dimension
sizes is 1. For an input whose size is 1 (or scalar) in a split dimension, the value in that dimension is
implicitly expanded to match the same size as the other dimensions. For MATLAB arrays, dimension
one refers to the number of rows and dimension two refers to the number of columns.

The total number of times the block runs within a pipeline is the product of the sizes of the input
value in the split dimensions. For example, consider a block with two input ports X and Y. The
following table shows the total number of runs (or processes) for various values of SplitDimension.

2-107

2 High-Throughput Sequence Analysis

2-108

X array size Y array size X.SplitDimensio |Y.SplitDimensio |Total number of
n n runs

1-by-1 2-by-2 [] [] 101 = 1. This is the
default (no
dimensional
splitting).

1-by-1 2-by-3 [] 201 =2

5-by-1 1-by-3 1 503 =15

2-by-2 3-by-3 2 0 because of
dimension
mismatch

2-by-3 2-by-4 2 "all" 0 because of
dimension
mismatch

3-by-1-by-4 1-by-3 "all" 2 30304 = 36

0-by-1 1-by-1 [] [] 101 =1

0-by-1 1-by-1 1 [1 0 because of size 0

in dimension 1

Empty sizes are allowed only in non-SplitDimension. If no inputs specify a SplitDimension,
there will always be exactly one run, regardless of the input array sizes. You can merge the output

results from multiple block runs with cell arrays. For details, see UniformOutput.

See Also

SplitDimension | bioinfo.pipeline.Input | bioinfo.pipeline.Pipeline | Biopipeline

Designer

Related Examples
. “Split Input SAM files and Assemble Transcriptomes Using Bioinformatics Pipeline” on page 2-

109

Split Input SAM files and Assemble Transcriptomes Using Bioinformatics Pipeline

Split Input SAM files and Assemble Transcriptomes Using
Bioinformatics Pipeline

Import the pipeline and block objects needed for the example.

import bioinfo.pipeline.Pipeline
import bioinfo.pipeline.blocks.*

Create a pipeline.

P

Pipeline

P:
Pipeline with properties:

Blocks: [0x1 bioinfo.pipeline.Block]
BlockNames: [0x1 string]

Use a FileChooser block to select the provided SAM files. The files contain aligned reads for
Mycoplasma pneumoniae from two samples.

fileChooserBlock = FileChooser([which("Myco 1 1.sam"); which("Myco 1 2.sam")]1);
Create a Cufflinks block.

cufflinksBlock = Cufflinks;

Add the blocks to the pipeline.

addBlock (P, [fileChooserBlock, cufflinksBlock]);

Connect the blocks.

connect (P, fileChooserBlock, cufflinksBlock, ["Files", "GenomicAlignmentFiles"]);

Set SplitDimension to 1 for the GenomicAlignmentFiles input port. The value of 1 corresponds
to the row dimension of the input, which means that the Cufflinks block will run on each individual
SAM files (Myco 1 1.samand Myco 1 1.sam).

cufflinksBlock.Inputs.GenomicAlignmentFiles.SplitDimension = 1;

Run the pipeline. The pipeline runs Cufflinks block two times independently and generates a set of
four files for each SAM file.

run(P);
Get the block results.

cufflinksResults

results(P,cufflinksBlock)

cufflinksResults = struct with fields:
TranscriptsGTFFile: [2x1 bioinfo.pipeline.datatypes.File
IsoformsFPKMFile: [2x1 bioinfo.pipeline.datatypes.File
GenesFPKMFile: [2x1 bioinfo.pipeline.datatypes.File
SkippedTranscriptsGTFFile: [2x1 bioinfo.pipeline.datatypes.File

2-109

2 High-Throughput Sequence Analysis

Use the process table to check the total number of runs for each block. Cufflinks ran two times
independently.

t = processTable(P,Expanded=true)

t=3x5 table
Block Status RunStart RunEnd RunErrors
"FileChooser 1" Completed 27-Jan-2023 14:54:26 27-Jan-2023 14:54:26 {0x0 MExcept.
"Cufflinks 1" Completed 27-Jan-2023 14:54:26 27-Jan-2023 14:54:28 {0x0 MExcept.
"Cufflinks 1" Completed 27-Jan-2023 14:54:28 27-Jan-2023 14:54:30 {0x0 MExcept:

Set SplitDimension to empty [] (which is the default). In this case, the pipeline does split the
input files and runs Cufflinks just once for both SAM files, processing each SAM file one after
another.

cufflinksBlock.Inputs.GenomicAlignmentFiles.SplitDimension = [];
deleteResults(P,IncludeFiles=true);

run(P);

cufflinksResults = results(P,cufflinksBlock)

cufflinksResults = struct with fields:
TranscriptsGTFFile: [2x1 bioinfo.pipeline.datatypes.File
IsoformsFPKMFile: [2x1 bioinfo.pipeline.datatypes.File

[
GenesFPKMFile: [2x1 bioinfo.pipeline.datatypes.File
SkippedTranscriptsGTFFile: [2x1 bioinfo.pipeline.datatypes.File

Check the process table, which confirms that Cufflinks ran just once.
t2 = processTable(P,Expanded=true)

t2=2x5 table

Block Status RunStart RunEnd RunErrors
"FileChooser 1" Completed 27-Jan-2023 14:54:30 27-Jan-2023 14:54:30 {0x0 MExcept.
"Cufflinks 1" Completed 27-Jan-2023 14:54:30 27-Jan-2023 14:54:33 {0x0 MExcept.

Tip: you can speed up the pipeline run by setting UseParallel=true if you have Parallel Computing
Toolbox™. The pipeline can schedule independent executions of blocks on parallel pool workers.

run(P,UseParallel=true)

See Also
bioinfo.pipeline.Pipeline | bioinfo.pipeline.blocks.Cufflinks | SplitDimension

Related Examples

. “Bioinformatics Pipeline SplitDimension” on page 2-107

2-110

Bioinformatics Pipeline Run Mode

Bioinformatics Pipeline Run Mode

When you rerun a pipeline after making some changes to it, the pipeline detects these changes and
reruns only those blocks that are affected by these changes. This automatic change detection enables
quick and efficient iterative workflows where you can tweak some parameters of a block or change
the input values or data for your analysis.

By default, the pipeline uses the Minimal run mode. In this mode, the pipeline runs only the blocks
for which one of the following statements is true:

* The block has not been run before or its results have been deleted.

* You have modified the block since the last time it ran.

* Input data, including new runtime inputs, to the block has changed since the last run.

* The block has one or more upstream blocks which have run since the last time the block was run.

If you are running only a subset of blocks within a pipeline, these rules are applied only to those
selected blocks.

The other run mode is the Full mode. The pipeline runs all blocks even if they have previously
computed results and there have been no changes affecting the block results.

Tip Use the default Minimal run mode whenever possible because skipping up-to-date blocks can
save significant time running the pipeline, especially when the pipeline has long-running blocks that
do not need to rerun.

See Also
bioinfo.pipeline.Pipeline | Biopipeline Designer

2-111

2 High-Throughput Sequence Analysis

Create Simple Pipeline to Plot Sequence Quality Data Using
Biopipeline Designer

This example shows how to create a bioinformatics pipeline in the Biopipeline Designer app that
loads sequence read data, filters some sequences based on quality, and displays the quality statistics
of the filtered data.

Open Biopipeline Designer App

Enter the following at the MATLAB® command line.
biopipelineDesigner

Select Input File Using FileChooser Block

In the Block Library panel of the app, scroll down to the General section. Drag the FileChooser
block onto the diagram.

4 Biopipeline Designer * - m} x

[] [Use Parallel 2l IC))
ED:’ J_j <}=,y Undo Run Mode l% 7
——————— [Parallel Options
MNew Open Save | Minimal v | Save Results Help
- — % Set Results Directory - -
PROJECT PIPELINE UNDO RUN RESQURCES

Block Library Pipeline Inspector

Search

+ Sequence Utilities
» Alignment
»+ Analysis

~ General
Select a single block

{ to configure

FileChooser | UserFunction /

Pipeline Information
Diagnostics Results

Source Value

You can also use the Search box to look for specific built-in blocks in the Block Library.

Double-click the block name FileChooser 1 and rename as FASTQ.

2-112

Create Simple Pipeline to Plot Sequence Quality Data Using Biopipeline Designer

FASTQ |

Files QO

Run the following command at the MATLAB command line to create a variable that contains the full
file path to the provided sequence read data.

fastqFile = which("SRR0O05164 1 50.fastq");

In the app, click the FASTQ block. In the Pipeline Inspector pane, under FileChooser Properties,
click the vertical three-dot menu next to the Files property. Select Assign from workspace.

+ FILECHOOSER PROPERTIES

Mame FASTO |
PathRoot | I3
Files - _ |

Cpen in Variable Editor [—
+ FILECHOOSER OPTIONS .

Assign from workspace i
SIETIETE Revert to default :|
Password : |

Select fastqFile from the list. Click OK.

Assign block property from Workspace x

Files Select workspace variable v

X

fastgFile

| Cancel |

Filter Sequences Based on Quality

In the Block Library panel, under the Sequence Utilities section, drag the SeqFilter block onto
the diagram. This block can filter sequences based on some specifications. The Pipeline Inspector
panel shows the default values of the block properties and filtering options. In the SeqFilter Options
section, change Threshold to 10, 20. Keep the other options as default. This 10,20 threshold value
filters out any sequences with more than 10 low quality bases, where a base is considered low quality
when its quality score is less than 20. For details, see SeqFilterOptions.

2-113

2 High-Throughput Sequence Analysis

w SEQFILTER PROPERTIES

Mame SeqFilter_1 |

w SEQFILTER OPTIONS

Method MaxMumberLowQualityBases | | 0 |
Threshold | |:|
WindowSize Inf | |:|
Encoding [lumina13 ||:|
OutputSufix | filtered | |j
PairedFiles L] H
WiteSingleton D |:|

= INPUT PORT PROPERTIES

FASTCQFiles. Value

FASTQFiles SpiitDimension 0 ||_|
 OUTPUT PORT PROPERTIES

FilteredFASTQFiles. UniformOutput B
NumFiltersdin. UniformOutput |:|
NumFilteredOut UniformOutput B

Plot Sequence Quality Data

Create a custom (bioinfo.pipeline.blocks.UserFunction) block that calls an existing
MATLAB function seqqcplot to plot the quality statistics of the filtered data.

1 In the Block Library panel, under the General section, drag and drop the UserFunction block
onto the diagram.
Rename the block to SeqQCPlot.

In the Pipeline Inspector pane, under UserFunction Properties, set the
RequiredArguments to inputFile and Function to seqqcplot.

2-114

Create Simple Pipeline to Plot Sequence Quality Data Using Biopipeline Designer

Pipeline Inspactor: SeqQCPlot

Search =Y |

® 5

* USERFUNCTION PROPERTIES

Name | SeqQCPlot

Required Arguments | inputFile

MameValueArguments

|
CutputArguments |
|

Function seqgcplot :
~ INPUT PORT PROPERTIES

inputFile Value | | |:|
inputFile SpiitDimension 0 ||_|

Connect Blocks and Run Pipeline
After setting up the blocks, you can now connect them to complete the pipeline.

Drag an arrow from the Files output port of FASTQ to the FASTQFiles port of SeqFilter_1.

FASTQ SeqFilter_1

FilteredFASTOFIles

Files (O0——»OFASTOQFiles MumFilteradin

MNumFilteredQut

Next connect the FilteredFASTQFiles port to inputFile port.
FASTQ SeqFilter_1 SeqQCPlot
FilteredFASTQFiles
Files O———» O FASTOFiles MumFilteradin JinputFile

MNumFiltered Qut

On the toolstrip of the app, click Run. During the run, you can see the progress of each block at its
status bar. Point to a color-coded section with a number to see its meaning.

2-115

2 High-Throughput Sequence Analysis

S5eqQCPlot

—»QinputFile

X

| 1 of 1 processes complete

After the run, you can click each output port name of a block to see the output value. For example,
click NumFilteredOut to see the total number of reads that were filtered out by the block.

SeqFilter_1
FilteredFASTOFiles

—+(OFASTQFiles NumFiltereding ; .y 4oup1e |

NumFiltered Out: 21

The app generates the following figure, which contains quality statistics plots of the filtered data.

2-116

Create Simple Pipeline to Plot Sequence Quality Data Using Biopipeline Designer

y Figure 1: SRRO05164_1_50_filtered fastg — O

File Edit View Inset Tools Desktop Window Help

Udde @ 0 K[E

Quality Boxplot

0 u.u|u|u.mmﬂnﬂuurnmumumu,.,.. i Mo D15 [hmmulﬂ| IH|H|UHlﬂlﬂunﬂm"nmﬂﬂﬂn"ﬂfﬂﬂuﬂuﬂﬂlﬂ '

Quality Score
]
=2

10 .
D_
-10 1 1 1 1 1 1
0 20 40 60 &0 100 120
Base Position
T Base Composition
[
3 ||| [I '|||||||||‘|||| et |||.| | |I'|'| t -|‘ It | || |
5 enll | | ||||||||||| | |'||'I |
© T e MR
&
il
1] 20 40 60 80 100 120
Base Position
(O - N C]G T [O |
Quality Distribution GC Distribution Length Distribution
0 30 25
21 25 o0
50
o .--\.21:} o
= E =15
g 215 2
30 10
10 I 5 0
0 1] L]
25 26 2F 28 20 20 40 60 40 60 80 100 120 140

Average Quality %% GC-Content Length

Base Positions: 1, Inf; Minimum Length: 0; Minimum Mean Quality: -Inf

2-117

2 High-Throughput Sequence Analysis

If there are any errors or warnings, the app shows them in the Diagnostics tab of the Pipeline
Information panel, which is at the bottom of the diagram.

Pipeline Information

Diagnostics Results

Mo Errors or Wamings

Click the Results tab. In the Source column, expand SeqFilter_1 to see the block results, such as
the filtered FASTQ file and the number of sequences that are selected and filtered out.

Pipeline Information

Diagnostics Results
Source Value

b FASTQ

* SegFilter_1
FilteredFASTQFiles 1=1 File
MumFilteredOut 21
MumFilteredin 29

SeqQCPlot

Rerun Pipeline with Different Filtering Threshold

You can specify a different threshold to filter sequences and rerun the pipeline. The app is aware of

which blocks in the pipeline have changed and which other blocks, such as downstream blocks, are

affected as a result. Hence, on subsequent runs, it reruns only those blocks that are needed, instead
of every block in the pipeline. For details, see “Bioinformatics Pipeline Run Mode” on page 2-111.

Click SeqFilter_1. In the Pipeline Inspector panel, change its Threshold option to 5, 20. This
setting now filters out any sequence with more than 5 low quality bases, where a base is considered
low quality when its score is less than 20. Both SeqFilter and SeqQCPlot blocks now have a warning
icon to indicate that the results are now out of date due to the change to the SeqFilter block.

FASTQ SeqFilter_1 SquEPlot
ﬁ> FilteredFASTQFiles h RN
Files »OFASTQFiles /A Block results are out of date with the current pipeline configuration

MumFilteradOut O

2-118

Create Simple Pipeline to Plot Sequence Quality Data Using Biopipeline Designer

By default, the app saves the pipeline results in the PipelineResults folder in the current
directory. It contains the pipeline results from the previous run before you changed the filtering
threshold. If you want to save the rerun results to a different folder and avoid overwriting the
previous results, you can change the directory location. Click Set Results Directory on the Home
tab and set the directory to a different location, such as C:\Biopipeline Designer

\SeqQCPlot App Example. If you point to the button, the app shows the directory location.

Use Parallel I%l { ? |

[Eil; Parallel Opticns
- Delete Save Results Help

|% Set Results Direct:ur_',f| Results ~ b
RUN

CABiopipeline_Designer5eqQCPlot_App_Example [~

Click Run. The app generates the following figure. During this run, the app does not rerun the
FASTQ block because it is not needed. It only reruns the other two blocks.

2-119

2 High-Throughput Sequence Analysis

4. Figure 1: SRRO05164_1_50_filtered fastg — O it

File Edit View Inset Tools Desktop Window Help

Udde @ 0 K[E

lity B lot
o . . . Iﬁualtyl' oxp?

40t :

L Huﬂuuuuuuﬂuuﬂuuwﬂﬂﬂuuﬂﬂﬂ

Quality Score
]
=2

10 .
I:I - -
-10 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 a0 G0 70 80 an 100
Base Position
T Base Composition

Reads (%)

[1] 10 20 30 A0 50 60 i) 80 a0 100
Base Position

|~ N C G T [Other |

7 Quality Distribution - GC Distribution 0 Length Distribution
60
40 2
50
9 g g
e . .
F a0 7 s
& g &
20
10
10 =
0 0 0
25 26 2Fr 28 29 20 40 60 40 &0 80 100 120
Average Quality % GC-Content Length

Base Positions: 1, Inf; Minimum Length: 0; Minimum Mean Quality: -Inf

2-120

Create Simple Pipeline to Plot Sequence Quality Data Using Biopipeline Designer

Go to the Results tab of the Pipeline Information to check the new results.

Pipeline Information

Diagnostics Results
Source Value
b FASTQ
¥ SeqFilter_1
FilteredFASTOFiles 1=1 File
NumFilteredOut 40
MumPFilteredin 10

SeqQCPlot

Export Results

You can export each output of a block or every output of a block to the MATLAB workspace by
selecting Export to Workspace from the context (right-click) menu of the corresponding row in the
Results table. To export all outputs of a block, right-click at the block level.

Pipeline Information

Diagnostics Results
Source Value
b FASTO
* SegFilter_1
; Export to Workspace
FilteredFAS Export the selected row to the MATLAE workspace
MumpFiltere
- Delete Result
e Delete the results of the corresponding block
SeqQCPlot I
See Also

Biopipeline Designer | “Bioinformatics Pipeline Run Mode” on page 2-111 | SeqFilterOptions

Related Examples
. “Count RNA-Seq Reads Using Biopipeline Designer” on page 2-122

2-121

2 High-Throughput Sequence Analysis

Count RNA-Seq Reads Using Biopipeline Designer

This example shows how to build a biocinformatics pipeline to count the number of reads mapped to
genes identified by Cufflinks using a sample paired-end RNA-Seq data for chromosome 4 of the
Drosophila genome.

Open Biopipeline Designer App

At the MATLAB® command line, enter:
biopipelineDesigner

Select Data Files

The example uses chromosome 4 of the Drosophila genome as a reference (Dmel chr4. fa). It also
uses a sample paired-end data provided with the toolbox (SRR6008575 10k 1.fq and
SRR6008575 10k 2.fq). Use a FileChooser block for each of these files to load the data into the

app.

Create FileChooser Block for Reference Sequence

In the Block Library pane of the app, scroll down to the General section. Drag and drop a
FileChooser block onto the diagram.

4 Biopipeline Designer * - m} x
HOME

] [] Use Parallel 2l CX)

ED:’ J_j < Undo Run Mode l% ?)
—_— UI& Parallel Options

MNew Open Save | Minimal v | Save Results Help

- - % Set Results Directory -
PROJECT PIPELINE UNDO RUN RESQURCES
Block Library Pipeline Inspector

Search

+ Sequence Utilities
» Alignment
»+ Analysis

~ General
Select a single block

{ to configure

FileChooser | UserFunction /

Pipeline Information
Diagnostics Results

Source Value

2-122

Count RNA-Seq Reads Using Biopipeline Designer

Run the following command at the MATLAB command line to create a variable that contains the full
file path to the provided reference sequence.

refSeq

which("Dmel chr4.fa");

In the app, click the FileChooser block. In the Pipeline Inspector pane, under FileChooser
Properties, click the vertical three-dot menu next to the Files property. Select Assign from
workspace.

+ FILECHOOSER PROPERTIES

Mame

PathRoot

Files

+ FILECHOOSER OFTIOMS

Username

Password

| FileChooser_1

Open in Variable Editor |-

Assign from workspace |

't:|

Fever to default

Select refSeq from the list. Click OK.

Assign block property from Workspace x

Files Select workspace variable - |

refSeq

.

Create FileChooser Blocks for Paired-End Data

[Cancel |

There are two sample files (SRR6008575 10k 1.fq and SRR6008575 10k 2.fq) provided with the
toolbox that contain RNA-Seq data for pair-end reads. You need to create a FileChooser block for
each file.

First, run the following commands at the MATLAB command line to create two variables that contain

the full file path to the provided files.

readsl
reads?2

which("SRR6008575 10k 1.fq");
which("SRR6008575 10k 2.fq");

In the app, drag and drop two FileChooser blocks. Click FileChooser_2 and set its Files property to
the reads1 variable and reads2 for FileChooser_3 (following the similar steps you did for the

reference sequence refSeq previously).

2-123

2 High-Throughput Sequence Analysis

Build Reference Genome Indices

Generate indices for the reference genome files before aligning the reads to it. Use a Bowtie2Build
block to build such indices.

From the Block Library pane, under the Alignment section, drag and drop the Bowtie2Build block
onto the diagram.

Connect FileChooser_1 to Bowtie2Build_1 blocks as shown next. To connect, place your pointer at
the output port of the first block and drag (an arrow) towards the input port of the second block.

FileChooser_T1 Bowtie2Build_1

Files (0—») ReferenceFASTAFiles
IndexBaseMame Q)

i IlndexBaseMName

Align Reads Using Bowtie2

Use a Bowtie2 block as an aligner to map reads from two sample files (FileChooser_2 and
FileChooser_3) against the reference sequence.

Drag and drop a Bowtie2 block from the Block Library pane. The IndexBaseName input port of
the block takes in the base name of the index files, which is the output of the previous (or upstream)
Bowtie2Build_1 block. The Reads1Files and Reads2Files input ports takes in the first mate and
second mate reads, respectively. The IndexBaseName and Reads1Files input ports are required
and must be connected, as indicated by solid circles. The Reads2File port is an optional port,
indicated by a dotted circle, and you use it only when you have paired-end data, such as in this
example. Connect these three blocks as shown next. The Bowtie2 Options section of the Pipeline
Inspector pane lists all the available alignment options. For details on each options, see
Bowtie2AlignOptions.

Bowtie2Build_1

+{) ReferenceFASTAFIles
IndexBaseNamea
2t IndexBaseMName

Bowtied 1
FileChooser_2 IndexBaseName
Files ReadsiFiles SAMFile Q
© iReads2Files
FileChooser 3

Files

2-124

Count RNA-Seq Reads Using Biopipeline Designer

Sort SAM Files

The next step is to use the SamSort block, which sorts the alignment records by the reference
sequence name first and then by position within the reference. Sorting is needed because you will use
the Cufflinks block next to assemble transcriptomes based on the aligned reads, and the block
requires sorted SAM files as inputs.

Drag and drop a SamSort block from the Sequence Utilities section of Block Library onto the
diagram. Then connect the Bowtie2_1 and SamSort_1 blocks.

Bowtie2 1

IndexBaseName SamSort_1

Reads1Files SAMFile Q—»0O SAMFile SortedSAMFile Q

—»: 1Feads2Files

Assemble Reads into Transcriptomes

Create a GTF (Gene Transfer Format) file from the aligned data (SAM files) to quantify transcript
expression. Use the Cufflinks block to assemble the sorted SAM files into GTF files, which contains
information on gene features, including the start and end positions of transcripts.

Drag and drop a Cufflinks block from the Analysis section of Block Library onto the diagram. Then
connect the SamSort_1 and Cufflinks_1 blocks.

Cufflinks_1
SamSort 1 TranscriptsGTFFile

IsoformsFPEMFile
—»(O3AMFile Sorted3AMFile O—() GenomicAlignmentFiles
GenesFPKMFile

SkippedTranscriptsGTFFile

Count Reads from Paired-End Data

Use the FeatureCount block to count the number of reads in the sorted SAM file that map onto
genomic features in the GTF file (TranscriptsGTFFile) generated by the Cufflinks block.
Speciflcally, you will count the number of reads mapped to genes identified by Cufflinks.

Drag and drop a FeatureCount block from the Analysis section of Block Library. Then connect the
three blocks (SamSort_1, Cufflinks 1, and FeatureCount_1) as shown next: .

2-125

2 High-Throughput Sequence Analysis

Cufflinks_1
TranscriptsGTFFile

IsoformsFPKMFile
) GenomicAlignmeniFiles
GenesFPKMFile

FeatureCount_1
SkippedTranscriptsGTFFile

SamSort_1 GTFFile

CountsTahle

*OSAMFile SortedSAMFile (O #(GenomicAlignmentFiles SummaryTable

I

2-126

Plot Read Counts

As the last step in this pipeline, create a custom function that plots read count results for cufflinks-

identified genes.

Go back to the MATLAB desktop. On the Home tab, click New Script. An untitled file opens in the

Editor. Copy and paste the following code in the file that defines a custom function called

plotCounts. The function generates two plots. The first plot contains the read counts of each gene

identified by Cufflinks. The second plot shows the genomic locations of these counts.

function plotCounts(fcCountsTable,cufflinksGenesFPKMFile)
genesFPKMTable = readtable(cufflinksGenesFPKMFile,FileType="text");
% Plot counts of genes identified by Cufflinks.
figure
geneNames = categorical(fcCountsTable.ID, fcCountsTable.ID);
stem(geneNames, log2(fcCountsTable.Aligned sorted))
xlabel("Cufflinks-identified genes")
ylabel("log2 counts")

% Plot counts along their respective genomic positions.
geneStart = str2double(extractBetween(genesFPKMTable.locus,":","-"));
figure
stem(geneStart, log2(fcCountsTable.Aligned sorted))
xlabel("Drosophila Chromosome 4 Genomic Position")
ylabel("log2 counts")
end

Save the file as plotCounts.min the current directory.

Create UserFunction Block to Represent Custom Function

A UserFunction block can represent any existing or custom function and can be used as a block in

your pipeline.

Drag and drop a UserFunction block from Block Library. In the Pipeline Inspector pane, under

UserFunction Properties, update:

* RequiredArguments to CountsTable,GenesFPKMFile
* Function to plotCounts

Count RNA-Seq Reads Using Biopipeline Designer

Pipeline Inspector: UserfFunction_1

Search o | (=

+ USERFUMCTION PROPERTIES

Mame | UserFunction_1

Required Arguments | CountsTable: GenesFPEMFile

Cutputirguments |

|
I
MameValuedrguments | || :
I
I

Funcfion | plotCounts

+ INPUT PORT PROPERTIES

CountsTable Value

GenesFPEMFile. Value

|

CountsTzble. SpltDimension | i | | : |
|
|

GenesFPEMFile. SplitDimension

The UserFunction_1 block is then updated with two input ports named after the values of
RequiredArguments.

Connect three blocks (Cufflinks_1, FeatureCount_1, and UserFunction_1) as shown next.

Cufflinks_1
TranscriptsGTFFile
IsoformsFPKMFile

=0 GenomicAlignmentFiles
GenesFPKMFile

SkippedTranscripts GTFFile UserFunction_1

(—DOCountsTable
»O

GenesFPKMFile

FeatureCount_1

GTFFile CountsTahble

#(GenomicAlignmentFiles SummaryTable

Run Pipeline
Click Run on the Home tab of the app. The app generates the following two figures.

The first figure shows the log2 counts of each gene identified by Cufflinks.

2-127

2 High-Throughput Sequence Analysis

4 Figure 1

Desktop Window Help

Insert Tools

View

Edit

File

NEEde 3|08 kE

0¥'44N2

6E°44ND

8E'44ND

LEH44ND
g£'44ND

GE'44dND
tE'44ND

££°44ND

€e'44Nd

L£44ND

0E'44ND

62°44ND

82'44ND
La44Nd

82'44Nd

Ge'44dNd

e’ 44Nd

£2°44ND

€e'44Nd

L£'4dNd
0e'44ND

6L°44ND

I~ o
R
FRTH
TR TH
=2 3
0o

gL44dNd

SL'44dNd

¥l '44dNd
£L44dNd

€L'44Nd
LL'44ND

0L'44Nd

6'44ND

8'44Nd

£44n2
9'44n2

§'44n2
¥'44N2

AEE)

Z'44n2

L'44ND

10 -

sunog zho|

=

fied genes

dent

5=l

filink

=
Q

The second figure shows the individual genomic locations of these counts.

2-128

Count RNA-Seq Reads Using Biopipeline Designer

4 Figure 2 - | =
File Edit View Inset Tools Desktop Window Help k]

Udde @ 0&E|&E

12 T T T T T T

10 1

log2 counis
=2}

i) 2 4 5] B 10 12 14
Drosophila Chromosome 4 Genomic Position w107

Open Completed Pipeline
The completed pipeline is provided for your reference.

If you have not open the live script file of the example (for instance, you are reading this example on a
web browser), run the following two commands at the MATLAB command line to open the pipeline in
the Biopipeline Designer app.

openExample("bioinfo/CountRNASeqReadsWithBiopipelineDesignerExample")
biopipelineDesigner("countRNASeqReads.plprj")

If you have already open the live script of the example and downloaded the
countRNASeqReads. plprj file and the plotCounts.m file in your current directory, run the
following command.

biopipelineDesigner("countRNASeqReads.plprj")

See Also
bioinfo.pipeline.Pipeline | bioinfo.pipeline.blocks.Cufflinks |
bioinfo.pipeline.blocks.Bowtie2 | bioinfo.pipeline.blocks.Bowtie2Build |

2-129

2 High-Throughput Sequence Analysis

bioinfo.pipeline.blocks.FeatureCount | bioinfo.pipeline.blocks.SamSort |
bioinfo.pipeline.blocks.FileChooser |bioinfo.pipeline.blocks.UserFunction

Related Examples

. “Create Simple Pipeline to Plot Sequence Quality Data Using Biopipeline Designer” on page 2-
112

2-130

Sequence Analysis

Sequence analysis is the process you use to find information about a nucleotide or amino acid
sequence using computational methods. Common tasks in sequence analysis are identifying genes,
determining the similarity of two genes, determining the protein coded by a gene, and determining
the function of a gene by finding a similar gene in another organism with a known function.

“Exploring a Nucleotide Sequence Using Command Line” on page 3-2

“Exploring a Nucleotide Sequence Using the Sequence Viewer App” on page 3-15
“Explore a Protein Sequence Using the Sequence Viewer App” on page 3-26
“Compare Sequences Using Sequence Alignment Algorithms” on page 3-30
“View and Align Multiple Sequences” on page 3-41

“Analyzing Synonymous and Nonsynonymous Substitution Rates” on page 3-55
“Investigating the Bird Flu Virus” on page 3-65

“Exploring Primer Design” on page 3-75

“Identifying Over-Represented Regulatory Motifs” on page 3-85

“Predicting and Visualizing the Secondary Structure of RNA Sequences” on page 3-96
“Using HMMs for Profile Analysis of a Protein Family” on page 3-108

“Predicting Protein Secondary Structure Using a Neural Network” on page 3-125
“Visualizing the Three-Dimensional Structure of a Molecule” on page 3-142
“Calculating and Visualizing Sequence Statistics” on page 3-159

“Aligning Pairs of Sequences” on page 3-173

“Assessing the Significance of an Alignment” on page 3-181

“Using Scoring Matrices to Measure Evolutionary Distance” on page 3-190
“Calling Bioperl Functions from MATLAB” on page 3-194

“Accessing NCBI Entrez Databases with E-Utilities” on page 3-206

3 Sequence Analysis

Exploring a Nucleotide Sequence Using Command Line

3-2

In this section...

“Overview of Example” on page 3-2

“Searching the Web for Sequence Information” on page 3-2
“Reading Sequence Information from the Web” on page 3-4
“Determining Nucleotide Composition” on page 3-5
“Determining Codon Composition” on page 3-8

“Open Reading Frames” on page 3-11

“Amino Acid Conversion and Composition” on page 3-13

Overview of Example

After sequencing a piece of DNA, one of the first tasks is to investigate the nucleotide content in the
sequence. Starting with a DNA sequence, this example uses sequence statistics functions to
determine mono-, di-, and trinucleotide content, and to locate open reading frames.

Searching the Web for Sequence Information

The following procedure illustrates how to use the MATLAB Help browser to search the Web for
information. In this example you are interested in studying the human mitochondrial genome. While
many genes that code for mitochondrial proteins are found in the cell nucleus, the mitochondrial has
genes that code for proteins used to produce energy.

First research information about the human mitochondria and find the nucleotide sequence for the
genome. Next, look at the nucleotide content for the entire sequence. And finally, determine open
reading frames and extract specific gene sequences.

1 Use the MATLAB Help browser to explore the Web. In the MATLAB Command Window, type
web('http://www.ncbi.nlm.nih.gov/")

A separate browser window opens with the home page for the NCBI Web site.

2 Search the NCBI Web site for information. For example, to search for the human mitochondrion
genome, from the Search list, select Genome , and in the Search list, enter mitochondrion
homo sapiens.

;-3 NCBl Rescurces (i) How To 3

|mrtnchnndnon homo sapiens @ Clear

% NCB] Search | Genoms =l

The NCBI Web search returns a list of links to relevant pages.

Exploring a Nucleotide Sequence Using Command Line

; 'L’;
o S M S

SGenome
Protein Genome Structure OMIM PMC
Search | Genome

;I for |m'rtnchnndrion homo sapiens| Go | Clear | Save Search

r Limits T Preview/Index T History T Clipkoard T Detailz \I

Dizplay |Summar§,' ;I Show |23 ;”Sendtn ;I

All: 48 \

Items 1 - 20 of 48

Page ||1 of 3 Next

[1: NC 003415

Links
Ancylostoma duodenale mitochondrion, complete genome

DHA; circular; Length: 13,721 nt

Organelle: mitochondrion

Created: 2002/02/21

Select a result page. For example, click the link labeled NC_012920.

The MATLAB Help browser displays the NCBI page for the human mitochondrial genome.

3-3

3

Sequence Analysis

3-4

cunk ol —“ —lz .j}éé nome [g|[Registe

Genome Structure OMIM PMC

Protein Journals Books
Search | Genome = far | Go I Clearl
|I Lirnits | Preview/Index | History | Clipkeard | Details |
Display IO'\.’ewie',',' ;I Show I 20 ;I I Send to ;I
[an:t \
Genome > Eukaryota > Homo sapiens mitochondrion, complete genome Links

Lineage: Eukaryota: Fungi/Metazoa group: Metazoa: Eumetazoa; Bilateria; Coelomata; Deuterostomia; Chordata; Craniata; Vertebrata; Gnathostomata
Teleostomi: Euteleostomi: Sarcopteryqii; Tetrapoda: Amnicta; Mammalia; Theria; Eutheria; Euarchontoglires: Primates; Haplorrhini: Simiifermes; Catarrhini
Hominoidea: Haminidas: Homininae: Homao: Homo sapigns

Genome Info: | Features: ST Links: Review Info:
homologs:
REET, Genes: 37 Genome Project Publications: [2Z]
MC_012920 = ’
GenBank: Protein o .
101415 coding: 13 Refseq Status: PROVISIONAL
Length: Structural y P .
16.569 nt RNAs: 24 TaxPlot Seq.Status: Completed

olecular and Mitochondrial
&) University of California,

Sequencing center: Center for M
Medicine and Genetics (MAl

GC Content: Pseuda

Lur IETEELETE University of California, Irvine, Mitomap.org, USA, Invine
o, 0 i -
a2 others: 30 Completed: 2009/07/08
Topology: Contigs:
circular None
Molecule: Other genomes for
dsDNA species: 5683
Gene Classification kased on COG functional categories Search gene, GenelD or I-:ncus_tag:l Find Gene |
_‘ o ’ 185m}lnt
1nt 5,511 nt N * - /
-
> > —)=
> P VS
. RNRT g RNR2 4 » ”’---I ™~

" o

Click here for Sequence Viewer presentation (hase sequence and aligned amino acids) of selected region

Display IO'«er\.ﬂie','{ ;I Show I 20 ;I I Send to ;I

Reading Sequence Information from the Web

The following procedure illustrates how to find a nucleotide sequence in a public database and read
the sequence information into the MATLAB environment. Many public databases for nucleotide
sequences are accessible from the Web. The MATLAB Command Window provides an integrated
environment for bringing sequence information into the MATLAB environment.

The consensus sequence for the human mitochondrial genome has the GenBank accession number
NC 012920. Since the whole GenBank entry is quite large and you might only be interested in the
sequence, you can get just the sequence information.

Exploring a Nucleotide Sequence Using Command Line

Get sequence information from a Web database. For example, to retrieve sequence information
for the human mitochondrial genome, in the MATLAB Command Window, type

mitochondria = getgenbank('NC _012920', 'SequenceOnly', true)

The getgenbank function retrieves the nucleotide sequence from the GenBank database and
creates a character array.

mitochondria =
GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCAT
TTGGTATTTTCGTCTGGGGGGTGTGCACGCGATAGCATTGCGAGACGCTG
GAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCATT
CTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACCTACTA
AAGT .

If you don't have a Web connection, you can load the data from a MAT file included with the
Bioinformatics Toolbox software, using the command

load mitochondria

The load function loads the sequence mitochondria into the MATLAB Workspace.
Get information about the sequence. Type

whos mitochondria
Information about the size of the sequence displays in the MATLAB Command Window.
Name Size Bytes C(lass Attributes

mitochondria 1x16569 33138 char

Determining Nucleotide Composition

The following procedure illustrates how to determine the monomers and dimers, and then visualize
data in graphs and bar plots. Sections of a DNA sequence with a high percent of A+T nucleotides
usually indicate intergenic parts of the sequence, while low A+T and higher G+C nucleotide
percentages indicate possible genes. Many times high CG dinucleotide content is located before a
gene.

After you read a sequence into the MATLAB environment, you can use the sequence statistics
functions to determine if your sequence has the characteristics of a protein-coding region. This
procedure uses the human mitochondrial genome as an example. See “Reading Sequence Information
from the Web” on page 3-4.

1

Plot monomer densities and combined monomer densities in a graph. In the MATLAB Command
Window, type

ntdensity(mitochondria)

This graph shows that the genome is A+T rich.

3 Sequence Analysis

3-6

Nucleotide density

01F

0

0.7

2000

4000

G000

8000 10000 12000 14000 16000 18000

A-T C-G density

0.3

0.5t
0.4 WWM

0

2000 4000 G000 8000 10000 12000 14000 16000 18000

Count the nucleotides using the basecount function.

basecount (mitochondria)

A list of nucleotide counts is shown for the 5'-3' strand.

ans
5124
5181
2169
4094

o0 x>l

Count the nucleotides in the reverse complement of a sequence using the seqrcomplement

function.

basecount(seqrcomplement(mitochondria))

As expected, the nucleotide counts on the reverse complement strand are complementary to the

5'-3"' strand.

ans
4094
2169
5181
: 5124

—on>x>l

Use the function basecount with the chart option to visualize the nucleotide distribution.

figure

basecount(mitochondria, 'chart', 'pie');

A pie chart displays in the MATLAB Figure window.

Exploring a Nucleotide Sequence Using Command Line

Count the dimers in a sequence and display the information in a bar chart.

figure

dimercount(mitochondria, 'chart', 'bar')

ans

: 1604
: 1495
: 795
: 1230
: 1534
1 1771
: 435
: 1440
: 613
: 711
1 425
: 419
: 1373
: 1204
: 513
: 1004

3 Sequence Analysis

2000 _

1500 |

1000

200 |

First Base A

Second Base

Determining Codon Composition

The following procedure illustrates how to look at codons for the six reading frames. Trinucleotides
(codon) code for an amino acid, and there are 64 possible codons in a nucleotide sequence. Knowing
the percent of codons in your sequence can be helpful when you are comparing with tables for
expected codon usage.

After you read a sequence into the MATLAB environment, you can analyze the sequence for codon
composition. This procedure uses the human mitochondria genome as an example. See “Reading
Sequence Information from the Web” on page 3-4.

1 Count codons in a nucleotide sequence. In the MATLAB Command Window, type
codoncount(mitochondria)

The codon counts for the first reading frame displays.

AAA - 167 AAC - 171 AAG - 71 AAT - 130
ACA - 137 ACC - 191 ACG - 42 ACT - 153
AGA - 59 AGC - 87 AGG - 51 AGT - 54
ATA - 126 ATC - 131 ATG - 55 ATT - 113
CAA - 146 CAC - 145 CAG - 68 CAT - 148
CCA - 141 CCC - 205 CCG - 49 CCT - 173
CGA - 40 CGC - 54 CGG - 29 CGT - 27
CTA - 175 CTC - 142 CTG - 74 CTT - 101
GAA - 67 GAC - 53 GAG - 49 GAT - 35
GCA - 81 GCC - 101 GCG - 16 GCT - 59
GGA - 36 GGC - 47 GGG - 23 GGT - 28
GTA - 43 GTC - 26 GTG - 18 GTT - 41

3-8

Exploring a Nucleotide Sequence Using Command Line

TAA - 157 TAC - 118 TAG - 94 TAT - 107
TCA - 125 TCC - 116 TCG - 37 TCT - 103
TGA - 064 TGC - 40 TGG - 29 TGT - 26
TTA - 96 TTC - 107 TG - 47 TTT - 78

Count the codons in all six reading frames and plot the results in heat maps.

for frame = 1:3
figure
subplot(2,1,1);
codoncount(mitochondria, 'frame', frame, 'figure',true,...
'geneticcode', 'Vertebrate Mitochondrial');
title(sprintf('Codons for frame %d',frame));
subplot(2,1,2);
codoncount(mitochondria, 'reverse',true, 'frame', frame, ...
'figure',true, 'geneticcode', 'Vertebrate Mitochondrial');
title(sprintf('Codons for reverse frame %d', frame));
end

Heat maps display all 64 codons in the 6 reading frames.

Codons for frame 1

AAR | AAC | ACA ACC | CAA | CAC [CCA ccCC 200
150
100
50

Genetic Code: Verebrate Mitochondrial
Codons for reverse frame 1

200
150
100
50

GGG GGT | GIG . GTT J TGG | IGT | TIG | TIT

Genetic Code: Vertebrate Mitochondrial

3 Sequence Analysis

3-10

Codons for frame 2

200

150

100

50

Genetic Code: Verebrate Mitochondrial

Codons for reverse frame 2
200

150

100

50

GGG GGT | GTG GTT JTGG | TGT | TTG | TIT

Genetic Code: Verebrate Mitochondrial

Exploring a Nucleotide Sequence Using Command Line

Codons for frame 3

200

AAR | AAC | ACA ACC | CAA | CAC | CCA CCC

100
50
Genetic Code: Vertebrate Mitochondrial
Codons for reverse frame 3
200
150
100

Genetic Code: Vertebrate Mitochondrial

Open Reading Frames

The following procedure illustrates how to locate the open reading frames using a specific genetic
code. Determining the protein-coding sequence for a eukaryotic gene can be a difficult task because
introns (noncoding sections) are mixed with exons. However, prokaryotic genes generally do not have
introns and mRNA sequences have the introns removed. Identifying the start and stop codons for
translation determines the protein-coding section, or open reading frame (ORF), in a sequence. Once
you know the ORF for a gene or mRNA, you can translate a nucleotide sequence to its corresponding
amino acid sequence.

After you read a sequence into the MATLAB environment, you can analyze the sequence for open
reading frames. This procedure uses the human mitochondria genome as an example. See “Reading
Sequence Information from the Web” on page 3-4.

1 Display open reading frames (ORFs) in a nucleotide sequence. In the MATLAB Command
Window, type:

3-11

3 Sequence Analysis

3-12

segshoworfs(mitochondria);

If you compare this output to the genes shown on the NCBI page for NC_ 012920, there are fewer
genes than expected. This is because vertebrate mitochondria use a genetic code slightly
different from the standard genetic code. For a list of genetic codes, see the Genetic Code table
in the aa2nt reference page.

Display ORFs using the Vertebrate Mitochondrial code.
orfs= seqshoworfs(mitochondria, ...

'GeneticCode', 'Vertebrate Mitochondrial', ...
'alternativestart', true);

Notice that there are now two large ORFs on the third reading frame. One starts at position 4470
and the other starts at 5904. These correspond to the genes ND2 (NADH dehydrogenase subunit
2 [Homo sapiens]) and COX1 (cytochrome c oxidase subunit I) genes.

Find the corresponding stop codon. The start and stop positions for ORFs have the same indices
as the start positions in the fields Start and Stop.

ND2Start = 4470;
StartIndex = find(orfs(3).Start == ND2Start)
ND2Stop = orfs(3).Stop(StartIndex)

The stop position displays.
ND2Stop =

5511

Using the sequence indices for the start and stop of the gene, extract the subsequence from the
sequence.

ND2Seq = mitochondria(ND2Start:ND2Stop)

The subsequence (protein-coding region) is stored in ND2Seq and displayed on the screen.

attaatcccctggcccaacccgtcatctactctaccatctttgeaggcac
actcatcacagcgctaagctcgcactgattttttacctgagtaggectag
aaataaacatgctagcttttattccagttctaaccaaaaaaataaaccct
cgttccacagaagctgccatcaagtatttcctcacgcaagcaaccgeatc
cataatccttc .

Determine the codon distribution.
codoncount (ND2Seq)

The codon count shows a high amount of ACC, ATA, CTA, and ATC.

AAA - 10 AAC - 14 AAG - 2 AAT - ©
ACA - 11 ACC - 24 ACG - 3 ACT - 5
AGA - © AGC - 4 AGG - 0 AGT - 1
ATA - 23 ATC - 24 ATG - 1 ATT - 8
CAA - 8 CAC - 3 CAG - 2 CAT - 1
CCA - 4 ccc - 12 ccG - 2 CCT - 5
CGA - 0 cGC - 3 CGG - 0 CGT - 1
CTA - 26 CTC - 18 CT6 - 4 T - 7
GAA - 5 GAC - 0O GAG - 1 GAT - 0O
GCA - 8 GCC - 7 GCG - 1 GCT - 4
GGA - 5 GGC - 7 GGG - 0 GGT - 1

Exploring a Nucleotide Sequence Using Command Line

GTA - 3 GTC - 2 GTG - 0 GTT - 3
TAA - 0 TAC - 8 TAG - 0 TAT - 2
TCA - 7 TCC - 11 TCG - 1 TCT - 4
TGA - 10 TGC - 0 766 - 1 TGT - 0
TTA - 8 TTC - 7 TTG - 1 TIT - 8

Look up the amino acids for codons ATA, CTA, ACC, and ATC.

aminolookup('code',nt2aa('ATA'))
aminolookup('code',nt2aa('CTA'))
aminolookup('code',nt2aa('ACC'))
aminolookup('code',nt2aa('ATC'))

The following displays:
Ile isoleucine
Leu leucine

Thr threonine
Ile isoleucine

Amino Acid Conversion and Composition

The following procedure illustrates how to extract the protein-coding sequence from a gene sequence
and convert it to the amino acid sequence for the protein. Determining the relative amino acid
composition of a protein will give you a characteristic profile for the protein. Often, this profile is
enough information to identify a protein. Using the amino acid composition, atomic composition, and
molecular weight, you can also search public databases for similar proteins.

After you locate an open reading frame (ORF) in a gene, you can convert it to an amino sequence and
determine its amino acid composition. This procedure uses the human mitochondria genome as an
example. See “Open Reading Frames” on page 3-11.

1

Convert a nucleotide sequence to an amino acid sequence. In this example, only the protein-
coding sequence between the start and stop codons is converted.

ND2AASeq = nt2aa(ND2Seq, 'geneticcode’, ...
'Vertebrate Mitochondrial')

The sequence is converted using the Vertebrate Mitochondrial genetic code. Because the
property AlternativeStartCodons is set to 'true' by default, the first codon att is
converted to M instead of I.

MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLAFIPVLTKKMNP
RSTEAAIKYFLTQATASMILLMAILFNNMLSGQWTMTNTTNQYSSLMIMM
AMAMKLGMAPFHFWVPEVTQGTPLTSGLLLLTWQKLAPISIMYQISPSLN
VSLLLTLSILSIMAGSWGGLNQTQLRKILAYSSITHMGWMMAVLPYNPNM
TILNLTIYITILTTTAFLLLNLNSSTTTLLLSRTWNKLTWLTPLIPSTLLS
LGGLPPLTGFLPKWAIIEEFTKNNSLIIPTIMATITLLNLYFYLRLIYST
SITLLPMSNNVKMKWQFEHTKPTPFLPTLIALTTLLLPISPFMLMIL

Compare your conversion with the published conversion in the GenPept database.
ND2protein = getgenpept('YP 003024027"', 'sequenceonly',true)

The getgenpept function retrieves the published conversion from the NCBI database and reads
it into the MATLAB Workspace.

Count the amino acids in the protein sequence.

3-13

3 Sequence Analysis

aacount (ND2AASeq, 'chart','bar')

A bar graph displays. Notice the high content for leucine, threonine and isoleucine, and also
notice the lack of cysteine and aspartic acid.

70

ARNDCOQEGH I L KMFPSTWYV

4 Determine the atomic composition and molecular weight of the protein.

atomiccomp (ND2AASeq)
molweight (ND2AASeq)

The following displays in the MATLAB Workspace:

ans =
C: 1818
H: 2882
N: 420
0: 471
S: 25
ans =

3.8960e+004

If this sequence was unknown, you could use this information to identify the protein by
comparing it with the atomic composition of other proteins in a database.

3-14

Exploring a Nucleotide Sequence Using the Sequence Viewer App

Exploring a Nucleotide Sequence Using the Sequence Viewer

App

In this section...

“Overview of the Sequence Viewer” on page 3-15

“Importing a Sequence into the Sequence Viewer” on page 3-15
“Viewing Nucleotide Sequence Information” on page 3-17
“Searching for Words” on page 3-19

“Exploring Open Reading Frames” on page 3-22

“Closing the Sequence Viewer” on page 3-25

Overview of the Sequence Viewer

The Sequence Viewer integrates many of the sequence functions in the Bioinformatics Toolbox
toolbox. Instead of entering commands in the MATLAB Command Window, you can select and enter
options using the app.

Importing a Sequence into the Sequence Viewer

The first step when analyzing a nucleotide or amino acid sequence is to import sequence information
into the MATLAB environment. The Sequence Viewer can connect to Web databases such as NCBI
and EMBL and read information into the MATLAB environment.

The following procedure illustrates how to retrieve sequence information from the NCBI database on
the Web. This example uses the GenBank accession number NM_000520, which is the human gene
HEXA that is associated with Tay-Sachs disease.

Note Data in public repositories is frequently curated and updated; therefore, the results of this
example might be slightly different when you use up-to-date sequences.

1 Inthe MATLAB Command Window, type

seqviewer
Alternatively, click Sequence Viewer on the Apps tab.

The Sequence Viewer opens without a sequence loaded. Notice that the panes to the right and
bottom are blank.

2 To retrieve a sequence from the NCBI database, select File > Download Sequence from >
NCBI.

The Download Sequence from NCBI dialog box opens.

3-15

3 Sequence Analysis

Downlead Sequence from MCEI | X

Enter Sequence Accession Number or Locus Mame

@ Mucleotide () Protein

Ok] ’ Cancel

L A

3 Inthe Enter Sequence box, type an accession number for an NCBI database entry, for example,
NM_000520. Click the Nucleotide option button, and then click OK.

The MATLAB software accesses the NCBI database on the Web, loads nucleotide sequence
information for the accession number you entered, and calculates some basic statistics.

3-16

Exploring a Nucleotide Sequence Using the Sequence Viewer App

e
4\ Biological Sequence Viewer - NM_000520 =B &
File Edit Sequence Display Window Help | a x
:Q;Q|&‘a|.§|@| Line length: .60 - EED]EE@
Sequence View MM_000520: Homo sapiens hexosaminidase subunit alpha (HEXA), transcript variant 2, mRMA.
NM_UUUSEU: Homeo sapiens| |Pasition: 2751 bp
- S—
ORF 1a z0 30 40 1] &0
) IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|
g----FuIITransIatmn 1 toacatcaca acgacttgtg grtttaateos CoCgLtLthe COOLTCotOAAa gLUACThOoAaqg it
?wAnnmadeDS 61 eccoctggoaagt cotttaccte coegtaggec tggogagetyg catcacaaca ttcaagatte
- CD5 with Translatio 121 accctagage catctgggaa actbtottet cocagghtcogoe chbgogtocte gooctoocoac
""" Complement Sequence 181 ccogttocttc tegaghbocggy tgagetgbct agtbtcoccatca cggcoccggocac ggccgoaggd
""" Reverse Complement 5 241 grtggecggtt atttactgct ctactgggos cgbgaacadgt cbggogagec gagoagroge
""" Features 301 cgacgccocgy cacaatceoge tgoacgtage aggagoctca ggtccaggoc ggaagtgaaa =
----- Comments 36l gggcagggtyg tgggtectoe tggggtogea ggcgcagage cgochbocbggbt cacgtgatte
471 geocogataagt cacgggggog cogotoacet gaccagggte tcacgtggoc agoococtoo
481 gagaggggag accagoeggge catgacaage tocaggottt ggtttteget getgotggog
541 gragegtbog caggacggge gacggcococtec tggoccobgge cbocagaactt coaaacctoe
E0l gaccageoget acgtcottta coogaacaac ttbcaattce agrtacgatgt cagetoggoo -
c|‘ﬁr] . EELl ygcocygcagecoyg goetgotocagt cotogacgag geoecttocage gotatcgtbga cotgotttte
= 721 ggttecocggghb cttggececocyg tocttacctec acagggaaac ggcatacact ggagaagaat
Base Count 78l grgrtgygttg CoCobgrLagt cacacctgga tgrtaaccage CLOCTACCLD ggagroadgty
. 1= B4l gagaattata ceocctgacecat aaatgatgac cagtgtttac tcctetetga gactgtotogg
A 593 Zl'sf—' 901 ggagctctoo gaggtetgga gacttttage cagebttgttt ggaaatctge tgagggoaca
C: 30 2?'3j5 9l ttetttatca acaagactga gattgaggac tttococgct thoctcacoey gyggettgetg
G: 16 26'01__ 1021 ttggatacat ctegoeatta cctgecacte tetageatece tggacactet ggatgtoatyg
T 632 25.2% 1081 gogtacaata aattgaacgt gttocactgy catctggtag atgatcotto cttococcatat
1141 gagagctteoca cttttoccaga gotocatgaga aaggggtboct acaaccotghb cacccacate
1201 tacacagcac aggatgtgaa JUagygtcatt gaatacgoac gygotocggygy tcatcogogrdg
- 1261 cttgeagagt ttgacactcoe tggocacact ttgtocotggg gaccaggtat cocotggatta
1| 1 & 4 (3 &4
4.7 BP/Pixel | @ x2Zoomin | | &, X2Zoomout |
Map View 1 1000 2000 2751 -
Sequence ol I I I :
CDs
|| 4 [Tl] | »

Viewing Nucleotide Sequence Information

After you import a sequence into the Sequence Viewer app, you can read information stored with

the sequence, or you can view graphic representations for ORFs and CDSs.

1

sequence.

In the left pane tree, click Comments. The right pane displays general information about the

3-17

Sequence Analysis

2 Now click Features. The right pane displays NCBI feature information, including index numbers
for a gene and any CDS sequences.

3

Click ORF to show the search results for ORFs in the six reading frames.

-
4\ Biological Sequence Viewer - NM_000520

= | B i |

File Edit Sequence

Display Window Help

| a x

a2 e

Line length: -E-ﬂ |

H O H

= [0

Sequence View

MM_000520: Homo sapiens hexosaminidase subunit alpha (HEXA), tfranscript variant 2, mRMA.

N:M_nuuszu: Homo sapiens| |Position: Words found: 33 2751 bp
[=-Sequence
10 zZ0 a0 40 50 &0
m . IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIIII
_ Full Translation 1 tcacatcaca acgactbgbg gotbtaatcc tocgbtbttc tgotbbctgaa gttacttcag =
;----Annotated CcDs :i-
“-CDS with Translatic 3 E
-1
----- Complement Sequence -
P q - —
----- Reverse Complement 5
----- Features £1 coctggoaagt cotbttaccte ccogtaggoc tggogagotg catcacaaca ttcaagatte
----- Comments :é
-1
-2
121 acecctagage catctgggaa actttocttoct ceoagghbogoo chbgogtooctc gococtoocoac
+1
< [Lm P =
-1
Base Count -z
-2
'y 593 2l.6%
181 ccoogtteotte togagtoggy tgagobgtot aghbtocatca cggocggoac ggocgoaggd
C: 750 27.3% +1
G: 716 26. 0% i
T: 692 25.8% _ 'f
= :5 :
241 grggooggtt atttacCgot ctactgggoc cgtgaacagt ctggogagoc gagoagrtge
+1
4 +
-1
_= .
-2 T
= 301 coacaccodgo cacaatcoogo toOcacotado adoagoctoa gotccadooc ogdaadtoaaa
4 I [4 [
4.7 BP/Pixel | ® x2Zoomin | | &) X2Zoom out
Map View 1 Laoan zaoo Z7EL +
| | |
Sequence
ORF
cos

I

3-18

Exploring a Nucleotide Sequence Using the Sequence Viewer App

4 Click Annotated CDS to show the protein coding part of a nucleotide sequence.

4\ Biclogical Sequence Viewer - NM_000520 o |8 &
File Edit Seguence Display Window Help | & x
- A _ . .
I.Q,,Q|»a|§|@| Line length: |60 ~ ED]EE@
Sequence View MM_000520: Homo sapiens hexosaminidase subunit alpha (HEXA), transcript variant 2, mRMA.
N_M_UUUSEU: Home sapiens| |Position: 2751 bp
E-Sequence
ORF 10 z0 20 40 ED &0
H) IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|
"""F"'”T'amlat":' 1 tracatcaca acgacttgtyg gttttaatcr tocgtttttec tgottctgaa gttacttcag o
"'“OttEdCD) £l cotggoaagt cobttaccte cocogtaggeoc tggogageotyg catcacaaca ttcaagatte
CDS with Translatio 121 acecctagage catcbgggaa actbtottot cocagghbogoe chgogtbocte goctoocoac
""" Complement Sequence 181 ccocogttotte togagtocggy tgagotgteot agttocatca cggocgdoac gooodoadod]
""" Reverse Complement 5 241 gtggeocgghbt atttactgeot ctactgggec cgbgaacaght chbggogagec gageagttge 3
----- Features 301 cgacgocogg cacaatcoge tOgcAcgrage aggagoctoa ggtocaggoc ggaagtgaaa
----- Comments 36l gggoagggty tgggtoctoo tggggbogoa gocgcagage cgoctotgght cacgtgatte
421 geoeogataaghb cacgggggcyg cogotcacct gaccagggto tcacgtggeoc agoccococtoo
481 gagaggyggay accagoggge catgacaago tocagygottt gULtttogot gotgotggcy
HEXA
541 gragogttog caggacggge gacggoocto tggocotgge ctbocagaacth coaaacctoo
4 [] } e
— £01 gaccageget acgtoccttta coccgaacaac ttboaattoe agtacgatghb cagotogogoe
Base Count HEXA
N 93 2164 - £l gogragooog gotgotocagt cotogacgag goctbocage gotatocgtga cotgotbtte
: LBE T
C: 750 27. 3% . HEXA
. 216 26 D%E 721 ggttooggght cttggococyg tocttaccto acagggaaac ggoatacact ggagaagaat
T 632 Z5.28 HEXA
781 grgrtggttyg tCCLCbLgrLagt cacacctgga tgtaaccage tLoCctacttht ggagrtoagtd
HEXA
841 gagaattata coctgaccat aaatgatgac cagtghbttac tootoctotga gactgtotgg
o HEXA
1 | il | 3 Fl P
4.7 BP/Pixel ’ *) X2 Zoom in I ’ (=}, X2 Zoom out
Map View 1 1000 Z0oo 2751+
]]]
Sequence =
ORF
CDE

4

{11

Searching for Words

You can also search for characteristic words or sequence patterns using regular expressions. You can
enter the IUB/IUPAC nucleotide and amino acid symbols that are automatically converted to
corresponding nucleotides and amino acids accordingly. For details about how symbols are
interpreted, see the Nucleotide Conversion and Amino Acid Conversion tables of seq2regexp.

3-19

3 Sequence Analysis

For instance, if you search for the word ' TAR' with the Regular Expression box checked, the app
highlights all the occurrences of 'TAA' and 'TAG' in the sequence since R = [AG].

1 Select Sequence > Find Word.

2 In the Find Word dialog box, type a sequence word or pattern, for example, atg, and then click
Find.

Find Ward [® |

Enter a Word:
atg

Regular Expression

Find || Concel |

The Sequence Viewer searches and displays the location of the selected word.

3-20

Exploring a Nucleotide Sequence Using the Sequence Viewer App

-
4\ Biological Sequence Viewer - NM_000520

= | B e |

File Edit Sequence Display Window Help | a x
= At) . -
pﬁ{”*a'@"@' Line length: |60 EED]EE@
Sequence View MM_000520: Homo sapiens hexosaminidase subunit alpha (HEXA), transcript variant 2, mRMA.
NM_000520: Homo sapiens| | Position: Waords found: 33 2751 bp
[=-Sequence
10 Z0 30 40 5o &0
ORF) IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|
g----FuIITransIatm 1 toacatcaca acgacttgtg grtttaateos CoCgLtLthe COOLTCotOAAa gLUACThOoAaqg it
: Annctated CD £l cotggoaagt cotttaccte ccogrtaggoc tggogagetg catcacaaca ttcaagatte
- CD5 with Translatio 121 accctagage catctgggaa actbtottet cocagghtcogoe chbgogtocte gooctoocoac
""" Complement Sequence 181 ccogttocttc tegaghbocggy tgagetgbct agtbtcoccatca cggcoccggocac ggccgoaggd
""" Reverse Complement 5 241 grtggecggtt atttactgct ctactgggos cgbgaacadgt cbggogagec gagoagroge
""" Features 301 cgacgocogyg cacaatcoge tgcacgtago aggagoctoa ggtccaggoc ggaagtgaaa 5
----- Comments 36l gggroagyggty tgggtoctoe tgggghbogoa gycgcagage cgochbotgghb cacgtgatte
421 geoegataadt cacggggicg cogotcacct gaccagggte tcacgtggoc agocococtoo
481 gagaggggag accagoggge catgacaago tocaggottt ggttttogeot gotgotggod
HEXA .
541 gragoegtteog caggacggge gacggoocto tggococtgge otcagaactt coaaacctoo
< [Sl
601l gaccagocget acgtocottta cocogaacaac ttboaattoco agtacgatghb cagotoggoo
Base Count HEXA
N . 1 64 - f61 gocgoagoocog gotgotcagt cotogacgag gocttocage gotatcgtga cotgotbtte
: LRE Y
C 750 27.3% - HERA
o 16 26. 0 721 ggttoogggt cLtggococy COCLCLACCLD acagggadac JUoatacact ggagaagaat
T £92 25.2% g
= 781 gtgttggttyg totcotgtagt cacacctgga tgtaaccage ttoctacttt ggagtoagtyg
HEX A
841 gagaattata coctgaccat aaatgatgac cagtgrtttac toctctobga gactgtotgd
HEXA
901 ggagctocteoc gaggtobgga gacttbtage cagoetbgtbtt ggaaatctge tgagggcaca
HEXA
96l tteotttateca acaagactga gattgaggac tttocoogot ttoctcacog gggottgotyg
1 | 1 | 3 4 . ol =
4.7 BP/Pixel | ® X2Zoomin | | &) X2Zoom out
Map View 1 1000 000 2751 -
| | |
Sequence
— b B ke b P —
ORF
=i = =]
] e = e =
o (o | { =
CcDhs
1] | *

Clear the display by clicking the Clear Word Selection button @ on the toolbar.

3-21

3 Sequence Analysis

Exploring Open Reading Frames

The following procedure illustrates how to identify the protein coding part of a nucleotide sequence
and copy it into a new view. Identifying coding sections of a nucleotide sequence is a common
bioinformatics task. After locating the coding part of a sequence, you can copy it to a new view,
translate it to an amino acid sequence, and continue with your analysis.

1 In the left pane, click ORF.
The Sequence Viewer displays the ORFs for the six reading frames in the lower-right pane.
Hover the cursor over a frame to display information about it.
4.7 BP/Pixel | ® x2Zoomin | | & X2Zoomout |
Map View 1 1000 2000 2751
Sequence i : : : !
— >—| i b b =+ ks s lg,-: E
ORF s i «|Frame: 1, StartBP: 502, EndBP: 2089, Length: 1588 |-
—f =t =t <
s B | | =i
cos i
||« n | ¥
2 Click the longest ORF on reading frame 2.
The ORF is highlighted to indicate the part of the sequence that is selected.
i| 47 BR/Piel | @ X2Zoomin | [& X2Zoom out
Map View 1 1000 zZ0on g751 =
| | | |
Sequence || N s
ORF ! — » He N == ! b I—%
= = — = i}
—t — = =
L3 | | =
CDs 3 Il
|| 4 1] | »
3 Right-click the selected ORF and then select Export to Workspace. In the Export to MATLAB

3-22

Workspace dialog box, type a variable name, for example, NM_000520_ORF 2, then click

Export.

Exploring a Nucleotide Sequence Using the Sequence Viewer App

Export to MATLAE Workspace | 29

Enter a Variable Mame:

MM_000520_0ORF_2

Export] ’ Cancel

L A

The NM_000520_ORF_2 variable is added to the MATLAB Workspace.

Select File > Import from Workspace. Type the name of a variable with an exported ORE, for
example, NM_000520_ORF_2, and then click Import.

The Sequence Viewer adds a tab at the bottom for the new sequence while leaving the original
sequence open.

3-23

3 Sequence Analysis

|'\

P
4\ Biological Sequence Viewer - NM_000520_ORF_2 =B %
File Edit Sequence Display Window Help | a x
- At) . .
pﬁQ|*a@|§|ﬂ| Line length: |60 - EED]EE@
Sequence View MM_000520_0ORF_2
NM_000520_ORF_2 Position: 232 bp
s cquencd
. ~ORF 10 z0 20 40 &0
E‘""FU”TFEHS'EtiOH || ||||||||||
E---ComplementSequence l atgatgacca gtgtttactc ctoctctgaga ctgtctggyy agoctctocga ggtctggaga i
i Reverse Complement 5 6l ctbttagcoca goLbbgttbgy sastctgcty agggcacatt ctttatcaac aagactgaga
. _____ Features 121 ttgaggactt tCoCOgOLLL CotCacodgy JOLLYCctgLt ggatacatcot cgocattacce
_____ Comments 181 tgccactctc tagocatcctyg gacactoctgy atgtcatggc gtacaataaa To
4 m 3
Base Count
A: 48 20.7%
C: &0 25.9% |
B: 54 23.3% |°
T: 7a 30.2%
4 m 3 4 (IR
0.4 BP/Pixel | ® x2Zoomin | | © X2Zoomout |
Map View 1 100 z00 zag *
|] |]
Sequence _—
1|] r
© Untitled x| NM_000520 x [NM_000520_ ORF_2 x|

5 In the left pane, click Full Translation. Select Display > Amino Acid Residue Display > One

Letter Code.

The Sequence Viewer displays the amino acid sequence below the nucleotide sequence.

3-24

Exploring a Nucleotide Sequence Using the Sequence Viewer App

|'\

e
4\ Biological Sequence Viewer - NM_000520_ORF_2 == %
File Edit Sequence Display Window Help | a x

= A) . .
pﬁQ|*a@|§|@| Line length: |60 - EED]EE@
Sequence View MM_000520_0ORF_2
NM_000520_ORF_2 Position: 232 bp
-Sequence
: +ORF 10 z0 20 40 50 &0
FuIITransIalia ||
..... Complement Sequence l atgatgacca gtgtttactc ctctoctgaga ctgbctgggy agctctcoga ggtctggaga i
‘Reverse Complement 5 H M T OV OF 3 5 L R L 35 G E L &% E ¥ W R
- Features # ® P v F T P L * D cC L G 5 35 P E &5 G TD
o D Q cC L L L 3 E T ¥ W G A& L R L E
------ Comments
6l cttttagcca gCLLgLLLgy aaatctgotyg agggoacatt chttatcaac aagactgaga
L L & 5 L F G N L L E & H 5 L &5 T E L R
F * F i C L E I C = G H I L ¥ 1 o o * D
T F &5 1 L ¥ u E 5 A E & T F F I N E T E
12l ttgaggactt CCOCCCYCLLL CoLCAcoddy JCLoygctgit ggatacatct Ccgccattacco
L R T F P & F L T G & C C W I H L 4 I T
& L 3 P L 3 0% PG L & ¥ ¥ I 5 P L F
4 m 3 I E I F F R F F H R z L L L I T 3 E H ¥
151 tgcocactcto tagocatcctyd gacactotgy atgtcatggc grtacaataaa To
Base Count
c H 3 L & 5 W T L W M 5 0w E T I N
I 43 20.7% % i T L # H F H 3 ©& cC H & oo o I
C: 60 25.9% | L P L & 5 I L I T L b v M A4 ¥ N K
B: 54 23.3% |°
T: 70 30.2%
4 m 3 l (L
0.4 BP/Pixel | ® x2Zoomin | | © X2Zoomout |
Map View 1 100 z00 zag *
|] |]
Sequence [—
1|] r
Untitled x| WM_000520 = [NM_DDUSZD_ORF_Z ><]

Closing the Sequence Viewer

Close the Sequence Viewer from the MATLAB command line using the following syntax:

seqviewer('close')

3-25

3 Sequence Analysis

Explore a Protein Sequence Using the Sequence Viewer App

In this section...

“Overview of the Sequence Viewer” on page 3-26
“Viewing Amino Acid Sequence Statistics” on page 3-26
“Closing the Sequence Viewer” on page 3-28
“References” on page 3-29

Overview of the Sequence Viewer

The Sequence Viewer app integrates many of the sequence functions in the Bioinformatics Toolbox
toolbox. Instead of entering commands in the MATLAB Command Window, you can select and enter
options using the app.

Viewing Amino Acid Sequence Statistics

The following procedure illustrates how to view an amino acid sequence for an ORF located in a
nucleotide sequence. You can import your own amino acid sequence, or you can get a protein
sequence from the GenBank database. This example uses the GenBank accession number

NP 000511, which is the alpha subunit for a human enzyme associated with Tay-Sachs disease.

1 Select File > Download Sequence from > NCBI.

The Download Sequence from NCBI dialog box opens.

2 In the dialog box, type an accession number for an NCBI database entry, for example,
NP_000511. Click the Protein option button, and then click OK.

The Sequence Viewer accesses the NCBI database on the Web and loads amino acid sequence
information for the accession number you entered.

3-26

Explore a Protein Sequence Using the Sequence Viewer App

4\ Biological Sequence Viewer - NP_000511 SRECE X
File Edit Sequence Display Window Help ax
RRNE #|e Line length: |60 ~ HmBe =0
Sequence View NP_000511: hexosaminidase A preproprotein [Homo sapiens]
NP_000511: hexosaminidas ot 520 aa
g
i~Features 10 20 30 40 50 &0
LComments || e | I [| I [| I |
1 mtssrlwfsl llaaafagra talwpwpgnf gtsdgryvly pnnfqfqydv ssaagpgosy e
61 ldeafgryrd llEgsgswpr pyltghrhtl eknvlvwswy tpgonglptl esvenytlti
121 nddgelllse tvwgalrgle tfsglwwksa egoffinkre iedfprfphr gllldotsrhy
181 lplssildtl dvmaynklnv fhwhlvddps fpyesftfpe lnrkgsynpv thiytagdvk
241 evieyarlrg irvlaefdep ghtlswgpgl pgllepcysg sepsgtfgpy npslnntyef
301 mstfflevss vipdfylhlg gdevdftowk snpeigdfnr kkgfgedflkyg lesfyigtll
361 divssygkgy wvwgevidnk vkigpdtiig wwredipvny mkelelvtka gfrallsapw
421 ylnrisygpd wkdfyvvepl afegtpegka lviggeacnw geywdntnlv prlwpragawv
481 aerlwsnklt sdltfayerl shfrecellrr gvgagplnvyg foegefegt
« [am v
Amino Acid Count
At 26 4.9y %
R 25 4.9% E|
n: 2z 4.2% —!
P a7 S.1%
C: 8 1.5%
Q: zz 4.2%
E: 38 6. 8% il
fiT o
0.912068924275332 AA/Pixel [®2Zoomin | [& X2Zoomout |
Map View 1 100 z00 200 400 500 529 4
L 1 L 1 L L 1
Sequence = |
w|]4] [+
Untitled = | NP_000511 x

Select Display > Amino Acid Color Scheme, and then select Charge, Function,
Hydrophobicity, Structure, or Taylor. For example, select Function.

The display colors change to highlight charge information about the amino acid residues. The
following table shows color legends for the amino acid color schemes.

3-27

3 Sequence Analysis

4\ Biclogical Sequence Viewer - NP_000511

File Edit Sequence Display

Lan® @ e

Sequence View

NP_000511: hexosaminidass

Position

eatures
Comments

61 ldeafgryrd llEgsgswpr

pyltgkrhtl

eknvlvwsvy

tpgcnglptl

== =]
Window Help ax
Line length: |60 HOBZ @
NP_000511: hexosaminidase A preproprotein [Homo sapiens]
529 aa
10 20 30 40 50 &0
‘‘‘‘‘‘‘‘‘ Lo b b b b i |

1 mtssrlwfsl llaaafagra talwpwpgnf gosdgryvly pnnfqfqydv ssaagpgosy h

eavenytlti

121 nddgeclllse tywgalrgle tfsglwwksa egtffinkte iedfprfphr gllldotsrhy
181 lplssildtl dvmaynklnv fhwhlvddps fpyesftfpe lnrkgsynpw thiytagdvk
24l ewvieyarlry irvlaefdop ghtlswogpol pollepcysg sepsgtfopwv npslontyef
301 mstfflevss wipdfylhlyg gdevdftowk snpeigdfnr kkgfgedfky lesfyigtll
361 divssvokogy wywgevidnk vkigpdtiig wwredipvny mkelelvtka gfrallsapw
421 ylnrisygpd wkdfyvvepl afegtpegka lviggeacnw geywdntnlv prlwpragawv
481 aerlwsnklt sdltfaverl shfrcellrr gvgagplnwg foegefegt

« [am v

Amino Acid Count

At 26 4.9y %

R 25 4.9% E|

n: 2z 4.2% —!

P a7 S.1%

C: 8 1.5%

Q: zz 4.2%

E: 38 6. 8% il

Ll F—— | o

0.912068924275332 AA/Pixel [®2Zoomin | [& X2Zoomout |

Map View 1 100 200
L 1 L

Sequence

4 i

Untitled = [NP_000511 x

Amino Acid Color Scheme Color Legend
Charge * Acidic — Red
* Basic — Light Blue
* Neutral — Black
Function * Acidic — Red
* Basic — Light Blue
* Hydropobic, nonpolar — Black
* Polar, uncharged — Green
Hydrophobicity * Hydrophilic — Light Blue
* Hydrophobic — Black
Structure * Ambivalent — Dark Green
* External — Light Blue
e Internal — Orange
Taylor Each amino acid is assigned its own color, based on the
colors proposed by W.R. Taylor on page 3-29.

Closing the Sequence Viewer

Close the Sequence Viewer from the MATLAB command line using the following syntax:

seqviewer('close')

3-28

Explore a Protein Sequence Using the Sequence Viewer App

References

[1] Taylor, W.R. (1997). Residual colours: a proposal for aminochromography. Protein Engineering 10,
7, 743-746.

3-29

3 Sequence Analysis

Compare Sequences Using Sequence Alignment Algorithms

3-30

Determining the similarity between two sequences is a common task in computational biology.
Starting with a nucleotide sequence for a human gene, this example uses alignment algorithms to
locate and verify a corresponding gene in a model organism.

In this example, you are interested in studying Tay-Sachs disease. Tay-Sachs is an autosomal
recessive disease caused by the absence of the enzyme beta-hexosaminidase A (Hex A). This enzyme
is responsible for the breakdown of gangliosides (GM2) in brain and nerve cells.

First, research information about Tay-Sachs and the enzyme that is associated with this disease, then
find the nucleotide sequence for the human gene that codes for the enzyme, and finally find a
corresponding gene in another organism to use as a model for study.

In the MATLAB Command window, enter:

web('https://www.ncbi.nlm.nih.gov/books/NBK22250/")

Your help browser opens with the Tay-Sachs disease page in the Genes and Diseases section of the
NCBI web site. This section provides a comprehensive introduction to medical genetics. In particular,
this page contains an introduction and pictorial representation of the enzyme Hex A and its role in
the metabolism of the lipid GM2 ganglioside.

After completing your research, you have concluded the following:

The gene HEXA codes for the alpha subunit of the dimer enzyme hexosaminidase A (Hex A), while the
gene HEXB codes for the beta subunit of the enzyme. A third gene, GM2A, codes for the activator
protein GM2. However, it is a mutation in the gene HEXA that causes Tay-Sachs.

Retrieve Sequence Information from a Public Database

The following procedure illustrates how to find the nucleotide sequence for a human gene in a public
database and read the sequence information into the MATLAB environment. Many public databases
for nucleotide sequences (for example, GenBank®, EMBL-EBI) are accessible from the Web. The
MATLAB Command Window with the MATLAB Help browser provide an integrated environment for
searching the Web and bringing sequence information into the MATLAB environment.

After you locate a sequence, you need to move the sequence data into the MATLAB Workspace.
Open the MATLAB Help browser to the NCBI Web site. In the MATLAB Command Window, enter:
web('https://www.ncbi.nlm.nih.gov/")

Search for the gene you are interested in studying. For example, from the Search list, select
Nucleotide, and in the for box enter Tay-Sachs. Look for the genes that code the alpha and beta
subunits of the enzyme hexosaminidase A (Hex A), and the gene that codes the activator enzyme. The
NCBI reference for the human gene HEXA has accession number NM_000520.

Get sequence data into the MATLAB environment. For example, to get sequence information for the
human gene HEXA, enter:

humanHEXA

getgenbank('NM 000520")

struct with fields:
LocusName: 'NM 000520

humanHEXA

Compare Sequences Using Sequence Alignment Algorithms

LocusSequencelLength: '4785'
LocusNumberofStrands: "'
LocusTopology: 'linear'
LocusMoleculeType: 'mRNA'
LocusGenBankDivision: 'PRI'
LocusModificationDate: '18-JAN-2021'
Definition: 'Homo sapiens hexosaminidase subunit alpha (HEXA), transcript variant
Accession: 'NM 000520
Version: 'NM _000520.6'
GI: "'
Project: []
DBLink: []
Keywords: 'RefSeq; MANE Select.'
Segment: []
Source: 'Homo sapiens (human)'
SourceOrganism: [4x65 char]
Reference: {[1x1 struct] [1x1 struct] [1x1 struct] [1x1 struct] [1x1 struct]
Comment: [48x66 char]
Features: [160x74 char]
CDS: [1x1 struct]
Sequence: 'ctcacgtggccagccccctccgagaggggagaccagcgggccatgacaagctccaggetttggttttce
SearchURL: 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=NM 000
RetrieveURL: 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore:

Search a Public Database for Related Genes

The following procedure illustrates how to find the nucleotide sequence for a mouse gene related to a
human gene, and read the sequence information into the MATLAB environment. The sequence and
function of many genes is conserved during the evolution of species through homologous genes.
Homologous genes are genes that have a common ancestor and similar sequences. One goal of
searching a public database is to find similar genes. If you are able to locate a sequence in a database
that is similar to your unknown gene or protein, it is likely that the function and characteristics of the
known and unknown genes are the same.

After finding the nucleotide sequence for a human gene, you can do a BLAST search or search in the
genome of another organism for the corresponding gene. This procedure uses the mouse genome as
an example.

In the MATLAB Command window, enter:
web('http://www.ncbi.nlm.nih.gov")

Search the nucleotide database for the gene or protein you are interested in studying. For example,
from the Search list, select Nucleotide, and in the for box enter hexosaminidase A.

The search returns entries for the mouse and human genomes. For the purposes of this example, use
the accession number AKO80777 for the mouse gene HEXA.

Get sequence information for the mouse gene into the MATLAB environment.
mouseHEXA = getgenbank('AK080777")

Locate Protein Coding Sequences

The following procedure illustrates how to convert a sequence from nucleotides to amino acids and
identify the open reading frames. A nucleotide sequence includes regulatory sequences before and

3-31

3 Sequence Analysis

after the protein coding section. By analyzing this sequence, you can determine the nucleotides that
code for the amino acids in the final protein.

After you have a list of genes you are interested in studying, you can determine the protein coding
sequences. This procedure uses the human gene HEXA and mouse gene HEXA as an example.

If you did not retrieve gene data from the Web, you can load example data from a MAT-file included
with the Bioinformatics Toolbox™ software. In the MATLAB Command window, enter:

load hexosaminidase

Locate open reading frames (ORFs) in the human gene. For example, for the human gene HEXA,
enter:

humanORFs = seqgshoworfs(humanHEXA.Sequence)

4 = & =]
=] ~
Frame 1 o
oooool agttgocgacgoooggoacaatocogotgoacgt agoaggagoc tocaggtecaggocgagaadtaga

ooo0es aagoocagaggtgtagggtoctoect gyt ogoaggogoadgagoocgooctotggbcacgtgattoge

gooLze cgataagtoacaggagogogocgctcacctgaccagogatctcacgtgogocagooocot oogadaddg

oooL9s ggagaccagogoggocatgacaagoctocaggetttggttttogeotgotgoctggoggcageogttog

ooozs7 caggacggygcgacggocctetggocctyggoctcagaactteocaaacctoocgaccageogeotacgt

ooo3z2 1 cotttaccogaacaactttoaatteocagtacgatgtocagetogygocogogoagecocgygetgeotoa

ono3es gtoctogacgaggocttocagogotatogtgacctgettttoggttocoggygtottggocoocgto

ono449 cttacctcacagggaaacggecatacactggagaagaatgtgttggttgtectctgtagtcacace

ooos13 tggatgtaaccagettoctactttggagtcagtggagaattatacocctgaccataaatgatgac

ooosT7d cagtgtttacteocteoctoctgagactgtectggggagetctoccgaggtoctggagacttttageocage

oo064 1 ttgtttggaaatctgctgagggcacattectttatcaacaagactgagattgaggactttococg

ooovos cttteoctcacocggggottgoctgttyggatacatctogecattacctgoccacteoctoctageatootyg

ooo7e9 gacactctggatgtcatgygcgtacaataaattgaacgtgtteocactggcatectggtagatgate

ooogs33 cttcotteoccatatgagageottocacttttocagayctcatgagaaagygyggtectacaaccotygt

ooogov cacccacatctacacagocacaggatgtgaagygagytcattgaatacgecacgygetocogyggygtate

ooo9el cygtgtgcttygcagagtttgacacteoctyggocaractttgtoctgygygaccaggtatcoctyggat

oolozs tactgacteocttgeotactotgyggtotgagoeoctetggoacctttyggaccagtgaatcocagtot

oologs caataatacctatgagtteocatgagocacattettettagaagtcagototgteottoocagattitt

ooll53 tatcttcatcttggaggagatgagygttgatttoacoctyctyggaagtocaacocagagatoocagy

oo1z 17 actttatgaggaagaaagycttoggtgaggacttcaagoagotyggagtcoceottotacatococagace

oo01zZ81 gotgotggacatogtoteottottatggoaagygygeotatgtgygtgtgygcaggaggtgtttgataat

001345 aaagtaaagattcagocagacacaatcatacaggtgtggogagaggatattocagtgaactata b
£ >

3-32

humanORFs=1x3 struct array with fields:
Start
Stop

seqshoworfs creates the output structure humanORFs. This structure contains the position of the
start and stop codons for all open reading frames (ORFs) on each reading frame. The figure displays

Compare Sequences Using Sequence Alignment Algorithms

the three reading frames with the ORFs colored blue, red, and green. Notice that the longest ORF is
in the first reading frame.

Locate open reading frames (ORFs) in the mouse gene. Enter:

mouseORFs = seqshoworfs(mouseHEXA.Sequence)

4] = I = e|
=] ~
Frame 1 o
gooool gotgotggaaggogagetageeggtgggocatygoogyctygocagygctctgggt ttogotgotyge

ooo0es tggoggogycgttggottgottgygocacgygcactgtggocgtygyococcagtacatoccaaaccta

gooLze ccacogygogctacacoctgtacoccaacaactteocagttooggtaccatgtocagttoggocygoyg

oooLes caggogggotgogtocgtectogacgagycoctttogacgotaceogtaacctygotoettoggttocy

ooozs7 gotottggocccgaceocageottotraaataaacagoaaacgttyggggaagaacatteoetggtyggt

ooo3z2 1 ctocgtogtcacagctgaatgtaatgaattteoctaatttggagtocggtagaaaattacaccota

ono3gs accattaatgatgaccagtgtttactegeocteoctgagactgtoctggggogetctocogaggtoctgyg

ono449 agactttcagtcagcttgtitggaaatcagectgagggcacgtictttatcaacaagacaaagat

ooos13 taaagactttectogattcoccctocaccggggeogtactgeoctggatacatectegeocattacctgoca

ooosT7? ttgtctagecatcocctggatacactggatgtcatggecatacaataaattcaacgtgtteocactygge

oo064 1 acttggtggacgactcttoctticocccatatgagagettecactttoccagagetcaccagaaaggy

ooovos gtocttcaaccctgteocactcacatctacacagcacaggatgtgaaggaggtcattgaatacgca

ooo7e9 aggcttocgygygtatcogtgtgotygygcagaatttgacacteocctyggocacactttgtectgyggye

ooogs33 caggtgcocecctyggttattaacaccttygctactetggytctecatectetoctgygoacatttyggace

ooogov gytgaaccccagteotcaacagracctatgacttecatgagecacactocttoctggagatcageoteoa

ooo9el gtotteocoggacttttateotoracctygygagyygatgaagtocgacttcacctygotgygaagtooa

oolozs accccaacatoccagygocttocatgaagaaaaagyggotttactgacttocaagocagotggagtoctt

oologs ctacatcocagacgeotgotggacatogtototgattatgacaaggygoctatgtggtgtgygocaggag

ooll53 gtatttgataataaagtgaaggttogyocagatacaatcatacaggtgtggogyggaagaaatye

oo1z 17 cagtagagtacatgttggagatgcaagatatcaccagggctggottocoggygococtgotgtotge

oo01zZ81 tococtggtacctgaaccgtgtaaagtatggococtgactggaagygacatgtacaaagtggagoce

001345 ctggogtttcatggtacgoctgaacagaaggoteotggtocattggaggggaggeoctgtatgtyggy b
£ >

mouseORFs=1x3 struct array with fields:
Start
Stop

The mouse gene shows the longest ORF on the first reading frame.

Compare Amino Acid Sequences

The following procedure illustrates how to use global and local alignment functions to compare two
amino acid sequences. You could use alignment functions to look for similarities between two
nucleotide sequences, but alignment functions return more biologically meaningful results when you
are using amino acid sequences.

After you have located the open reading frames on your nucleotide sequences, you can convert the
protein coding sections of the nucleotide sequences to their corresponding amino acid sequences,
and then you can compare them for similarities.

3-33

3 Sequence Analysis

Using the open reading frames identified previously, convert the human and mouse DNA sequences to
the amino acid sequences. Because both the human and mouse HEXA genes were in the first reading
frames (default), you do not need to indicate which frame.

humanProtein = nt2aa(humanHEXA.Sequence);
mouseProtein = nt2aa(mouseHEXA.Sequence);

Draw a dot plot comparing the human and mouse amino acid sequences. Dot plots are one of the
easiest ways to look for similarity between sequences. The diagonal line shown below indicates that
there may be a good alignment between the two sequences.

warning('off', 'bioinfo:seqdotplot:imageTooBigForScreen');
seqdotplot(mouseProtein, humanProtein,4,3);

ylabel('Mouse hexosaminidase A (alpha subunit)')
xlabel('Human hexosaminidase A (alpha subunit)')

uif = gcf;

uif.Position(:) = [100 100 1280 800]; % Resize the figure.

Human hexosaminidase A (alpha subunit)

100 200 300 400 500 600 700 800
) T T T T
ST T T T . T T T . T
a, " ' v .
S
o
.
\-\'\.
",
100 [~ . e
-
E 200 - \\ —
2 .
F S :
(o]
=
[=%
s \
<
2 : S
@ 300 - . . —
h=] -
=
£
2 R
£z T
2 S
@ 400 - . N
o .
= A
.,
‘\-_\\N\h

500 — . ' . : ' T .]

0 - ' ' ‘ ' . —

warning('on', 'bioinfo:seqdotplot:imageTooBigForScreen');

Globally align the two amino acid sequences, using the Needleman-Wunsch algorithm.
[GlobalScore, GlobalAlignment] = nwalign(humanProtein,mouseProtein)
GlobalScore = 634.3333

GlobalAlignment = 3x812 char array
' SCRRPAQSAARSRSLRSRPEVKGQGVGPPGVAGAEPPLVT*FADKSRGRRSPDQGLTWPAPSERGDQRAMTSSRLWFSLLLAAAFAGRATAI

3-34

Compare Sequences Using Sequence Alignment Algorithms

' [| | : | | | | | L= LD PRt 1
I . GR-------- [A----G-R----n-- Weommmomne- AMAGCRLWVSLLLAAALACLATA

You can also visualize the alignment in the Sequence Alignment app. The alignment is very good
between amino acid position 69 and 599, after which the two sequences appear to be unrelated.
Notice that there is a stop (*) in the sequence at this point. If you shorten the sequences to include
only the amino acids that are in the protein you might get a better alignment. Include the amino acid
positions from the first methionine (M) to the first stop (*) that occurs after the first methionine.

seqalignviewer (GlobalAlignment);

E Biolegical Sequence Alignment - 1 EI@

File Edit Display Help
4 A A |@|1EETEIE

- B -
c‘mwﬁul-c--?———an -------- F---GRG-GFFG--G--FF----FAD---G-R-FOD-G--WF-F---GD--AMAGCRLWFSLLLAAAFACRATALW
5 10 15 20 25 30 35 a0 45 50 55 60 &5 T 75 80 85 0
Sequence 1[5 € FagsaaRsRs LAsBRFEVEGQGVGF FGVAGAEFFLVT "FADRSRG sanaLTuPnPsslmlnuTss LNFSLLLA&&F&GI&T&LN
Suqm-wﬂ--------""------------“I--------"---------"----“- c e e .Ml L AMAGCEILW VS LLLAAALACLATALMW
8 10 15 20 25 3 35 &0 &5 &1 83 1]] a 78 al a5 a0

-

4 [

O e

e o

Trim the sequence from the first start amino acid (usually M) to the first stop (*) and then try
alignment again. Find the indices for the stops in the sequences.

humanStops = find(humanProtein == '*')

humanStops 1x6

41 599 611 713 722 730

mouseStops = find(mouseProtein == '*'")

3-35

3 Sequence Analysis

mouseStops = 1Ix4

539 557 574 606

Looking at the amino acid sequence for humanProtein, the first M is at position 70, and the first stop
after that position is actually the second stop in the sequence (position 599). Looking at the amino
acid sequence for mouseProtein, the first Mis at position 11, and the first stop after that position is
the first stop in the sequence (position 557).

Truncate the sequences to include only amino acids in the protein and the stop.
humanProteinORF = humanProtein(70:humanStops(2))

humanProteinORF =
'"MTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYVLYPNNFQFQYDVSSAAQPGCSVLDEAFQRYRDLLFGSGSWPRPYLTGKRHTLEKNVL)

mouseProteinORF

mouseProtein(1ll:mouseStops(1l))

mouseProteinORF =
"MAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYTLYPNNFQFRYHVSSAAQAGCVVLDEAFRRYRNLLFGSGSWPRPSFSNKQQTLGKNIL

Globally align the trimmed amino acid sequences.

[GlobalScore trim, GlobalAlignment trim] = nwalign(humanProteinORF,mouseProteinORF);
segalignviewer(GlobalAlignment trim);

E Biological Sequence Alignment - 2 EI@

File Edit Display Help L
A AR |@| EETEL

5 i 15 20 25 k] 35 L] 45 50 55 L] &5 T 75 E] &5 a0

Sequence 14 T5 S LwFsLLLanAFacInTaLuPNPQuFQTan FVLYFHNNFQFQYDVY S SAAQFPGCSVLDEAFQRYRD LLFGSGSWFRIFYLTG L B
Soquencez[ACCRILWY S LLLAAALACLATALWPWPRGQYIGTY YTLquuFQFIv_IvssnnqnccvanEaF \d LLFescswWwPEBIFsSFsNBoaT LG
5 10 15 20 25 3 35 £ 45 50 55 & &5 T 75 a0 a5 a0

-

| »

d|

3-36

Compare Sequences Using Sequence Alignment Algorithms

humanORFs = seqshoworfs(humanHEXA.Sequence)

Another way to truncate an amino acid sequence to only those amino acids in the protein is to first
truncate the nucleotide sequence with indices from the seqshoworfs function. Remember that the
ORF for the human HEXA gene and the ORF for the mouse HEXA were both on the first reading
frame.

“ (=&][=]
= Y
Frame 1 "
ooooolL agttgcogacgocoggoacaatoccgotgoacgtagoaggagoctcaggtccaggocggaadgtga

ooo0es aagoagcadagtgbtggatoctoctggaat cgcaggogoadgagoogoectotggbcacgtgattoge

oooLze cogataagtocacgdagoaogoocgctcacctgaccadgautctcacgtgogocagooocotoogadacd

ooolo3 goagaccagogygogecatgacaagotccagyctttyggttttogoetgotgotgygogygcageoygttog

ooozs7? caggacyggygcgacgygoccctoctygocctygygoctocagaacttoccaaacctoocgaccageogctacyt

oooszz2l cotttacccgaacaactttocaatteocagtacygatygtcagetogygoocgogocagecocgyotyotoa

Ooo03E5 gtoctogacgaggocttocagogeotatogtgacctygettttoggttoogggtottgygococogte

ooo449 cttacctoacagyggaaacyggocatacactggagaagaatgtgttggttgteteotgtagtcacace

ooos13 tygatgtaaccagettoctacttityggagtoagtgyagaattataccectgaccataaatgatgac

ooosT7? cagtgtttactoototeotgagactgtotgyggageotctoecgaggtoctggagacttttagocayge

O00e4 1 ttgtttggaaatctgotgagggoacattoctttatcaacaagactgagattgaggactttoocoogyg

ooovos ctttoctcacoggggottgotgttyggatacatctogeocattacctgocactoctoctagoatooty

o007 e9 gacactotggatgtcatgygcgtacaataaattgaacgtgttocactggcatctggtagatgate

000833 ctteocttoocatatgagageottoacttittocagageotcatgagaaagygggtoctacaacectgt

ooogaw cacccacatctacacagracaggatgtgaaggagygtcattgaatacgoacggeotoccggggtate

ooo9el cgtgtgottgocagagtttgacacteoctyggocacactttgteoctggggaccaggtateococtggat

oo10z25 tactgactocttgetactoctgggtectgagecctetggecacctitggaccagtgaatecccagteot

oologs caataatacctatgagttcatgagecacattcttecttagaagtcageotectgtecttoccagatttt

o01L153 tatctitcatcttggaggagatgaggtigatttcacctgeotggaagtcrcaacccagagatccagyg

o012 17 actttatgaggaagaaagygcttoggtgaggacttcaagcagetggagtcecttctacatoceocagac

oolzel gotgotggacatocgtoteotteocttatggocaaggygctatgtggtgtgygcaggaggtgtttgataat

oo0l345 aaagtaaagattcagccagacacaatcatacaggtgtyggocgagaggatatteocagtgaactata hd
< >

humanORFs=1x3 struct array with fields:

Start
Stop

mouseORFs = seqshoworfs(mouseHEXA.Sequence)

3-37

3 Sequence Analysis

]

“ (=&][=]
= Y
Frame 1 "
ooooolL gotgotggaadgaggadgctggecggtgggccatggocggetgecaggotctgggt ttogetgetge

ooo0es tggcggogygcgttggeottgocttggocacgygcactgtggocgtgygococccagtacatccaaaccta

oooLze ccaccgygcgctacaceoctgtacoccaacaactteocagttocoggtaccatgtcagttoggocygcyg

ooolo3 cagygogyggctygocgtocgtoctogacgayygeoeoctttogacyctacocgtaacctgetcttoggttoog

ooozs7? gotcttyggeoceocgacoccagecttoctraaataaaraygycaaacgttgygygaagaacattctgygtgygt

oooszz2l ctoecgtocgtcacagoctgaatgtaatgaatttoctaatttyggagtocggtagaaaattacacecta

Ooo03E5 accattaatgatgaccagtgtttactogoototgagactgtoctggyggogototcogaggtotygyg

ooo449 agactttoagtcagottgtityggaaatcagectygaygygoacgtteotttatcaacaagacaaagat

ooos13 taaagacttteoctogattoocctocacoyggygyogtactgotyggatacatoctogeocattacctygooa

ooosT7? ttgtotageatcocotggatacactyggatgtratyggratacaataaattcaacgtgttocactgyge

O00e4 1 acttggtggacgactottocttoccatatgagagottocactttoccagagotcaccagaaaggy

ooovos gtocttraaceoctgtocactocacateotaracagcacaggatgtgaaggaggtcattgaatacgca

o007 e9 aggcttoggggtatcogtgtgoctgygocagaatttgacactoctgygoccacactttgtoctgggygge

000833 caggtgococtygggttattaacacecttgoctacteotgggtoctcateoteotoctggoacatttggace

ooogaw ggtgaaccocagteotrcaacagocacctatgactteoatgagecacactottoctggagatcageteoca

ooo9el gtottoocggacttttatoctocacctgyggagygyggatgaagtogacttocacctgctggaagtoca

oo10z25 accccaacatccaggeocttcatgaagaaaaagggetttactgacttcaageagectggagtoctt

oologs ctacatccagacgetgoctggacategtctctgattatgacaagggeotatgtggtgtggcaggayg

o01L153 gtatttgataataaagtgaaggttcocggeocagatacaatcatacaggtgtggcgggaagaaatge

o012 17 cagtagagtacatgttggagatgcaagatatcaccagggctggecttocogggcoctgotgtotge

oolzel tococtggtacctgaaccgtgtaaagtatgygcoctgactggaaggacatgtacaaagtggagocce

oo0l345 ctgygocgtttcatggtacgoctgaacagaaggectctggtcattggaggyggagygectgtatgtggg hd
< >

3-38

mouseORFs=1x3 struct array with fields:

Start
Stop

humanPORF = nt2aa(humanHEXA.Sequence (humanORFs(1).Start(1):humanORFs(1).Stop(1l)));
mousePORF = nt2aa(mouseHEXA.Sequence(mouseORFs(1).Start(1):mouseORFs(1).Stop(1l)));
[GlobalScore2, GlobalAlignment2] = nwalign(humanPORF, mousePORF);
seqalignviewer(GlobalAlignment2);

Compare Sequences Using Sequence Alignment Algorithms

File

|4 Biological Sequence Alignment - 3 EI@

Edit Display Help

A

a4 A

) 12578

4

co““"“,!acanwFsLLLAAAFacnaTALHPNPQYFQTYHRRYTLYPIIIIFQFnanssaaQPGcvanEAanYnnLLFGSGSNPHPYFSGI&RHTLGI&H

-

§ 10 15 20 25 30 35 0 45 50 85 0 i} T 75 B &5 a0

Sacuenca 1

pTs S LwFsLLLunAFnGInTuLHPNPQuFﬂTan YVLYFNNFOQFOQYDY SSAAQFGCSVLIDEAFOQRYRDLLFGSGSWRFRIFYLTG L B
Saquencez M AG CRIL WY S LLLAAALACLATALWFWPRQYIQTY VTLvPlllquFI\'_I\(ssnnqnc.c\r\anEuF v LLFGESGEWFRFSFSNRQQTLG

5 10 15 20 25 3 35 &0 45 51 55 1] B85 wa 75] a5 a1

|«

0

The result from first truncating a nucleotide sequence before converting it to an amino acid sequence
is the same as the result from truncating the amino acid sequence after conversion. An alternative
method to working with subsequences is to use a local alignment function with the nontruncated
sequences.

Locally align the two amino acid sequences using a Smith-Waterman algorithm.

[LocalScore, LocalAlignment] = swalign(humanProtein,mouseProtein);
seqalignviewer(LocalAlignment);

3-39

3 Sequence Analysis

E Biological Sequence Alignment - 4
File Edit Display Help

A4 A A|@EE

VS5 AAQPFGCSY LDEAFRARYRDLLFGSGSWPRPYFSGK

GDGRAWAMAGCRLWFSLLLAAAFACRATALWPWPFQYFQTYHRRYTLYPNNFQF

Consansus
8 0 15 20 25 0 35 a0 45 50 5 60 i} T 75 B &5 a0
Sacuencs 1 . AMTSS LNFSLLLJ\J\.J\.FJ\GIJ\TJ\LNPNPQHFQTS TYVLYPFPMNFOQFOQYDVSSAAQPFGCSY L LLFGSGEWFRIFYLTG
Sacuenca 2 WAMAGCRILWVYSLLLAAALACLATALWPWRAOYIGTY TTLYFPNNFOFBEITHIVSS AAQAGC WYL MNLLFGSGEWFRIFS FSN
5 10 15 20 25 3 35 0 45 51 55 1] B85 wa 75 & a5 a1

|«

4

I TR TR

close all;

See Also
swalign | nwalign

3-40

View and Align Multiple Sequences

View and Align Multiple Sequences

In this section...

“Overview of the Sequence Alignment App” on page 3-41

“Visualize Multiple Sequence Alignment” on page 3-41

“Adjust Sequence Alignments Manually” on page 3-42

“Rearrange Rows” on page 3-50

“Generate Phylogenetic Tree from Aligned Sequences” on page 3-52

Overview of the Sequence Alignment App

The Sequence Alignment app integrates many sequence and multiple alignment functions in the
toolbox. Instead of entering commands in the MATLAB Command Window, you can use this app to
visually inspect a multiple alignment and make manual adjustments.

Visualize Multiple Sequence Alignment

1 Read a multiple sequence alignment file of the gag polyprotein for several HIV strains.

gagaa = multialignread('aagag.aln')
2 View the aligned sequences in the Sequence Alignment app.

seqgalignviewer(gagaa);

3-41

3 Sequence Analysis

4| Biological 5equence Alignment - 1

File Edit

Display Help

AAR|@ 8.

GAR-MS5VLSGKKLDEWEKIRLRARPGGKRKK YMLEHIVWAAKELDRFGLNES LLESKEGCO®KILSVLOQPLVFTGSENLESLFNTVOVIWCIHAEE

Consansus
5 i 15 20 25 k] 35] 45 5 55 & &5 T 75 B &S

M2 IV waaN FGLAESLLESBEGCQ LTYLBPMVYPTGS ENL LFNTVCWVIWCI
HV2MCN13 IVWAANELDRIFGLAESLLESRIEGCO LTYLGPLVPTGESENL LFNTVEVIWCI
SIMM2S] vV WAANELDRBIFGLAESLLENKEGCO LSVLAPFLVPTGSENL LYNTVCVIWCI
SIvMMEIE Vv WAANELDRIFGLAESLLENRKEGCCO LEVLAPFPLVPTGS ENL LYNTVCWVIWCI
HW-2UCT IIWAVNELDRBFGLAESLLESMEGC LTYLAPLVPTGSEMNL LFNTVCWVIVCL
SlenEa IIwaanRIELDRIFGS AESLLESKBEGCQ LAVLAFLMPTGS ENL LFSTVCWYVYWCL

SIVAGMETTA LIwAGKRIEMERIFGLEIERL LETREGCCO IEVLTPLEPTESES L LFNLCCWIWCT
SIVAGMI LIWAG FGLMIER|LLESEEGC IEVLYFLEFTGSEGL LFNLVCWLFCV
SIvmnd54e0 VI W WS FGLMER|ILLESQEGCE LEVLFPFLVPFTGSENLISLYNTCCCIWEWY

-1 IV WAS Y ALMPELLETSEGCHMIOI IGALOGPAIGTETEEL L¥YNTVATLYCWV
H HDE LIWAS FTLHNPGLLETSEGCHBIOIIGQALOPSIQTGSEET LYNTVATLYCV

SiVee LV WAS FACNMPGLMETAEGCEQL L LErPaLBITGESEG L LFNTLAVLWCWV
ClepalS LV WAS FACMNPGLMETADGCLOLL LEPALBITGES EG L LFNTLAWVLWCV

SV TAN
Slviman

Sl\ihoest

FAMMPGLMENVEGCW
FGLEDSLLETQBGC

FGLGSQLLETAEGEC

ILQLOQFSVODIGSFEIISLFNTICWLYCY

LEVILPLGQPTGSEST
LEVCWFLYATGS L

LFGIASWLYCT

LVGTVECWICCC

&5 k] 55 1]

]] 75

a1 a5

MRl

TR

U e R S

3-42

Adjust Sequence Alignments Manually

Algorithms for aligning multiple sequences do not always produce an optimal result. By visually
inspecting the alignment, you can identify areas whose alignment can be improved by a manual
adjustment.

1 To better visualize the sequence alignments, you can zoom in by selecting Display > Zoom in.

Select this option multiple times until you achieve the zoom level you want.
2 Identify an area where you could improve the alignment.

View and Align Multiple Sequences

Z Biological

Sequence Alignment - 1

File Edit Display Help
A A A|@ =
Consensus [LE T AER T T WpaTeRTTAR W
15 120 125 130 135 140 145 150 155 160 165 o 175 180 185
HIv-2 GGNYPVQI.VGGNYT IPLSP TLHKNA
HIW2-MCN13 GGNFPVOOQ.VGGNYT YPLSP TLHKA
SMM251 GGNYPVOQOQ.IGGNYVW LEFLSFP TLKA
SNMMZ38 GGHNYPVOQOQ. IGGNYVW LELSFP TLKA
HIW-2UCA GGNYPVQQ. IAGNYVW MPLSEP TLKNA
ShsmSLE2b s GGHNYPYOQQ. VGNNYY TPLSP TLHKNA
SNAGMETTA GISINYPVVN.QNNAUV QFLS P TLHKA
SWAGKM3 LSONFPADQO QGNAWTI VELSP TLKNA
Smnd5440 \"ISIN\"PIQ\I‘ INQTPVW QGISP TLKA
HIW-1 QY¥SQNYPIVONLQGOMYMIGATISP TLHNA
HIV1-MDK QVSONYPIVONLOQGOMY QAISP TLHKNA
Shepz A\"SINYPVVQNAQGQLV QFMS P TLHKA
ClVepzUS IGSSENYPVIOQNAQGOMY QAMS P TLKNA
ShepzTAN1 SGSIL\"P\FIT AQGVA QPISP TLKA
Shman VPSGNYPVVRITQGGGFQ QA\"IP |_|_I1-
Shhoast GGNYPLI NQ WY TPLSP TIQT
165 ||
Rl [o
187
[N T N T e
! 1] N
l“l“l h :; ‘ i [e 'il i ‘ T . |I
| N | gL L
lﬁlllllllll I |- “I||I||] IIIII 0 = g II | IIIIII IIII IIIIIIII
[- | 5eq - | Aln —-- |
3 Click a letter or a region. The selected region is the center block. You can then drag the

sequence(s) to the left or right of the center block.

3-43

3 Sequence Analysis

{4 Biological Sequence Alignment - 1 — O >
File Edit Display Help N
A4 A @)=

-

Consensus @ ETAEK - - - = = - - - - MPOQTSRPTAIP|=- = = = = = = = = = = = === @=== PSG-GGNYPVORO-VGGNYVHOPLSPRTLNA
115 120 125 130 135 40 145 150 155 160 165 170 175 180 185

Hvz TGTAEM. - MPS5TS FTAIPY. . . . - 0 s s s e s e 55 GGN‘I"P\"QI.\"GGNYT IPLSPRTLNA
Hvamcnis TeTAER. MENTSRPETAIP. . . o o o oo . PSGRIGGENFPVOQ. VEGNYTHYPLSPRTLNGA
SWMM251 TG TAEBT MPETS BTN oL SS5GRIGGNYPVOQ. IGGNYYVY LEPLSPFRTLNA
SvMM23 TGETTET HPITS BETRABY Lo SEGRIGGNYPVOOQ. IGENYVW LPELSPFRTLHNA
Hvouct v . . CEM. L. MPATSRIPTAIR|. PS . .GENYPVQQ.TAGNYVHMPLSPRITLNA
SvemSLazh SGTAEM. LPAGS Talpl. oo PS..GGNYPYOQ. VENNYYHTPLSPRTLNGA
SWAGMETTA [N Talpl. oL Pﬁﬁlslnvwvvn_qnnnuv QPLSPRITLNA
SAGM Twlel. L. PGG.SONFPADO. QGNAWIMVPLSPRTLNA
SWmnd5440 TAI.{‘T? ________________ PAVIE.N\'PIQU tnaTepvillocIspPRITL N A
HIv-1 YPIVOQNLOQGOMVEICAISPRTLNA
HIV1-NDK YPIVONLOGOMYHOQAISPRTLNGA
Shepz YPVVONAQGOLVHEIOPMS PRITLHNA
ChepzUS YPVIQNAQGOMVEIOAMSPRITLNA
SNepzTANA LYPVITDAQGWYA apP1IsPRITLNA
Smon YPYVVYEBITAGGGFQ QA\"IP LLIT
Shihoost (GG O T v o vt e e e e YPLI naRwvBHTPLSPRTIOGT

115 120 125 130 135 140 145 150 155 160 165 1

-

1| [IO

i B

JUTEN s

|l

STVmds440 | Seq 9 | Aln 140 |

3-44

4

To move a single letter (T in this example), click and drag the letter T (center block) to the right

to insert a gap.

View and Align Multiple Sequences

[#] Biological Sequence Alignment - 1 - O >
File Edit Display Help N
A AR
-
Consensus (2 &
115 120 125 130 135 40 145 150 155 160 165 170 175 180 185
Hvz[TGTAER. MPSTSRPETAP[[... 55 GGNYPVQI.VGGNYT IPLSPRTLNA
HvzmchiZ TG TAEM. MENTSRETAPR[[... oo o .. PSGRIGGNFPVOQ.VGGNYTHIVPLSPRITLNA
SWMM251 TETAET meRTsReTaR[[o SSGRIGENYPVOQ. IGGNYVHILPLSPRITLNA
SWMMzaa TETTET HPITS PTAPL[. ..o oo sSsCRIGENYPVOQ. IGENYVHILPLSPRTLNA
mvzuci [T . . CEM. meaTs@eTarl [... 0oL PS..GENYPVQQ.ITAGNYVHIMPLSPRITLNA
ShsmSLEzh SGTAER. LePaQsRIPTAPRL| ..o oo oL PS..GGNYPVQQ.VGNNYVYHITPLSPRITLNA
SMAGMETTA N B - R R PGGISINYPVVN.QNNAUV QPLSPRITLNA
SMAGM3 N VTVERLL Lo PCG.SQNFPAQQ.QGNAWIHIVPLSPRITLNA
SMmnd5440 ATA LR ..o PAVEN\'PIQU tngTevHlacIsPRITLNA
Hivel A QQAA v o o CABTGNMN . o o oo e e e e e e e e SQVSOQNYPIVAQNLOQGOMYIoAISPRATL N A
Hivi-nok T @@ A A oo L LADRS . L. e oo SQYSQNYPIVANLQGOMVEloAISPRITLNA
Swepz [@EVAQP0QQ@QB. .. || SAVSINYPVVQNAQGQLV aPMsSPRITLNA
ClVepzUS ASG. . .|| oo SNIGSSNYPVIQNAQGOMVEloAMSPRITLNA
ShcpzTANI NS TATS QNAG-TVPPSGNTGNTGI ITPscsl YPVITDAQGVYA arpIseITLNA
swmon (@G EQRIA L AAAMAPPTG . [[0 oo oo cvPSGNYPVVRITOGGGF QA\"IP LLIT
Swihosst [GEMBIQ @ T L Lo e e e GGNYPLI NaQRw TPLseP@TIOQT
115 120 125 130 135 140 45 150 155 180 165 |
-
1| [IO
15 187
il I i l | I' | | | 1 [®
I VEU I WU
' l“l“l I h o L e 1] ‘ IRy Ml |
ol LT, N S
mlll I 1 I II I I !I II ! |- . Ll 15 1 IIIII 1 II n [1 1 [l]] IIIIII] II IIIl III !
[STVmds440 | Seq 9 | Aln 140 |

5

Close the gap by dragging the letter back to the left.

3-45

Sequence Analysis

3-46

[#] Biological Sequence Alignment - 1 - O >
File Edit Display Help N
A4 4% @ =
Consensus @ ETAEK - - - = = - - - - MPOQTSRPTAIP|- = = = = = = = = = = = = = = = = = PSEG-GGEGNYPVOOQ-VEGNYVHOQPLSPRTLHNA
15 120 125 130 135 40 145 150 155 160 165 o 175 180 185
Hvz[TGTAEM. 73 L3 Y 55 GGNYPVQI.VGGNYT IPLSPRITLNA
HvaMmcNia TG TAER. APl . o oo PSGRIGGNFPVYOQ . VGGNYTHVYPLSPRTLNA
SWMM2EY TG TAET APl . oo SEGRIGGENYPVOQ . IGGNYVHLPLSPRTLNA
SWMM23g TGETTET 3 [SSCREEHNYPVOD . IGCENYVHLPLSPRTLHNA
Hvezuct (T - - -EB. L. 3 - PS . .GENYPVOQ.IAGNYVHMPLSPRITLNA
SvemSLazh SGTAEMR. 73 L3 Y PS5 . .GGNYPVYOQ.VGNNYVYVHTPLSPRTLNA
SNAGMETTA RN s e e e PGGISINYPVVN.QNNAUV QFLS P TLHKA
SIVAGKMI VIR .o PGG.SOQNFPAQO .QGNAWIRBVPLSPRTLNA
SN 5440 . = - PAVIE.N\'PIQU itngTPvHoGcIs PRITLNA
HIW-1 YPIVOAQNLOQGOMYMEIOATISP TLHNA
HIV1-MDK YPIVONLOQGOQMY QAISP TLHKNA
Sepz YPVVONAQGOQLY QFMS P TLHKA
CVepzUS ¥YPVIOQNAQGOMY QAMS P TLKNA
SNepzTANA LYPVITDAGQGVA GPISPRTLHNA
Smon Y PVY TQGGGFQ QA\"IP LLIT
Shihoast (GG Q@ T oo e ¥PLI NQRwvYHTPLSPRTIGQT
d45 120 125 130 135 140 145 150 155 160 165 1
[O
187
ST [I i e
1|| | T T
1 H 1 n |
| L1 i|||II U IiI U 1 Il | I
il ' I i gL T
1 |I [N} 1 1] |
wllll I IIIII 1 IIIII 1 III 1 1 l IIIII II IIIIIII
STVmds440 | Seq 9 | Aln 136 |
6 You can also move multiple residues (a subsequence). Suppose you want to move a subsequence

to available gaps. First select the gap region that you want to fill in.

View and Align Multiple Sequences

{4 Biological Sequence Alignment - 1 — O >
File Edit Display Help N
44%|@ =
=
Consansus REGEIIREESEEE HEITEI TR PSG-GGNYPVOQ-VGGNYVHOPLSPRTL
115 120 125 130 135 40 145 150 155 160 165 170 175 180 185
mvz[AETEGTAEM. MPSTSRPTAP|.« ... s s GGNYPVQI. YT
Hvzmcniz AETGTAEM. meNTSRPTAR|.o PSGRIGENFPVQQ . v T
SwMMzsT METGTAET melrs@eTar|. .. sscRlcenyPvoaq. v v
svmmzas METETTET - melTsRPTAR. ... ssclcenvypvaoan . Vv
S el MPATSRIPTAP|. PS..GGNYPVQQ . Vv
ShemsLazn W ESGTAEM. PTAP| « o o it i PS..GGNYPVQQ. ¥
svacnera DBl CTTARL Lo PGGISINYPV‘VN. "R%
SIVAGHS VTV L PGG.SQNFPAQQ wI
swmnasiao M ERMEIN AAS a7 & 7[R PlVENYPIQV PV
vt EOMA Q@ A A RV . SQVSQNYPIVQN M v
HIVINDK RORBRIT @ @ A A - . o o v v v v ADS o v e e | e e e LSQVSQNYPIVQN M v
Shepz MEQEVAQP I __________________ _savslrnfpvvqn Lv
cvepeus Rloc EE@EQ L. L ASG . | SNIGSSNYPVIQN MV
ShepzTant EINNSTATS .. L QN A TITPSGSILYPU]’.T A
S AAAAAPPTG . [o o o oottt e LEVPEGNYPVY F
swihoast A A GIIRIQ QT - GGNYPLI
15 120 125 130 135 140 145 150 155 160 165 170 175 180 185
1=
]

B

LI G

1
SIVmds440 | Seq 9 | Aln 17 |

)
00
A LN

7 Drag the subsequence(s) from the right or left of the gap region into the gap area.

3-47

3 Sequence Analysis

{4 Biological Sequence Alignment - 1 — O >
File Edit Display Help N
AAA|@E
-
Consensus A EQGTAEK - = = = = = = - = MPQTSRPTAP[- - - - - - oo a oo s PSG-GGNYPVQQ-VGGNYVHOQPLS PRTL
115 120 125 130 135 40 145 150 155 160 165 170 175 180 185
Hvz AETGTAENR. MPSTSEIPTAP|.00 5 5 GGNYP
Hvamoni WETGTAER. MPRTSRIPTAP[. . .. i i oot PsSGRGGNFP
SwmMzs1 METGTAET meRTSRIPTAR SSGRGGNYP
SwMMza METETTET me@TsReTapl. ..o sscRlceNnyY P
wvzuci AeT . . M. MmeaTsRIPTAR[. ... L PS..GEGNYP
swsmslazn MESGTAER. PTAPR oo oo PS..GGNYP
swacmsrra PRONERA A CTTAPR| L PGGISINYP
SIVAGMI VTVPRL L PGG.SQNFP
Svmndsiao MERIE N A AS L . L L L. L ATAT[.. o nQV.INQTPV
Hiv- R A @ @A A CABTENMN. . . .foov i vn e nne SQVSQNYEP
HIvi-nDK [BIEERIT Q @ A A o0 0 0 CADRS L L e e e e -S5QVSaQNYP
Shepz MEQEVAQP I .SAVS ¥ P
civeus O EEMER ASG NIGSSENYP
ShepzTant EINNSTATS .. L QN A pscsll_vp
A AAMAAAPPETGE .. o o v vttt CVPSENY P
Swinosst (A A GIIRIQ @ T . . . Lo e eGEGNYP
115 120 125 130 135 140 145 150 155 160 165
|
o

|

i

Il i /H"' l\..l

TH]

SDde5443 | 5eq

9 | Aln 155 |

8 Suppose you want to remove one or more of the aligned sequences. First select the sequence(s)

to be removed. Then select Edit > Delete Sequences.

3-48

View and Align Multiple Sequences

{4 Biological Sequence Alignment - 1 — O >
File Edit Display Help N
Az 2 Copy Ctrl+C
Delete Sequences I -
Lag
Select All Chrle A | ——m—— e
P =MPOTSRPTAP == === ==2®2®c=2=2=m2===2=2== PSG-GGNYPVOROQ-VGGNYVHOQPLSPRTLNA
Deselect All
130 135 140 145 150 155 160 165 7o 175 160 185
Move Rows(s) up
55 GG N P\"QI.\"GGNY FL TLHNA
Mowve Rows(s) down
HIW PSGRIGGNFPVQQ.VGGEGNY B L TLNA
Move Rows(s) to Top
= 585G GG N PVOQ.IGGNY FL TLHNA
Move Rows(s) to Bottom
= 556G GGHN PVOOQ.IGGNY TLHNA
Remove Empty Columns PS..GCENYPVQQ.TAGHNY TLWA
swemsLazp S G TAEM. VOOQ.VGENNY TLNA
SENAGMETTA IN ERNA A BN VY N.QNKAW TLHKA
SNMAGMI AQGQ.0QG w TLKNA
Shmnds440 RRE N A A S . . 0 0 L L L L L IgVv. TLHNA
Hv-1 A @QAA o CADTENHN . . v vt e e e e e e e e e e IVQNLQGQOM TLHA
Hivi-nDK BT @0 A A « - AS . . & & & & = & & s o= o= ow o8 om s s s s & o= & o= s s IVOQNLOQGOM TLHKNA
SWepz [REVAQP L L L.0QQQQD VYaQNAQGOL TLNA
cives R EEMEQ L. VIQHNAQGQGM TLNA

d45 120 125 130 135 140 145 150 155 160 165 7o 175 180 185 1
=
| »
115 187
y l | I | | | 1 : TN [
| | 1 | "
1 H n |
11 1 P 1 , I | |
|| | d I 1| ! l |L l “I J |
J II |I II‘Illl L} III ! [] 1 1 (It] 1 1 fmirn

--- | 58g --- | Aln --- |

9 Remove empty columns by selecting Edit > Remove Empty Columns.

3-49

3 Sequence Analysis

4. Biological Sequence Alignment - 1 — O >
File Edit Display Help N
Az 2 Copy Ctrl+C

Delete Sequences

-
Select All o g e— .

¢ =MPNTSRPTAPG-=====2ooenneee===n= PSG-GGNYPVOQQO-IGGNYVHOQPLSPRTLNA
Deselect All

130 135 140 145 150 155 160 165 170 175 180 185

Tl 0y TmMPsTSRPTAP s sSE GGNYP\-‘QI.\-‘GGNYT TPLSPRITLN A

hl Vil den CMPNTSRIPTAP. . oot PSGRIGGNFPYQQ.VGGNYTHIVPLSPRITLNGA
TR) U T TSP TAPR . o ot e e e S5SGRIGGNYPVQQ.TGGNYVHILPLS PRITLNGA

T) AT TSRPTAP . o oot et sscRlccnyYyPvaa. TGENYVHILPLS PRITLNGA
Remove Empty Columns V\[\"__Mna'rs BTAP . . .o PS . GENYPVAOO. TAGHNYVHMPLSPRTLNA
svemslazn SGTAEM. LPAGSIMPTAP . o v ov vt et e e PS..GGNYPYQQ.VENNYVHTPLSPRITLNGA
svacmrra MEM. < 8. NE . TTAP . o v it e e et e PGGESINYPVVN.QNNAUV QPLsPRITLNA
SACK nTTETsscoBuo@evrve. PGG.SQNFPAQQ.QCGNAWIMVE LS PRITLNGA
svmnaseso BN A RE] EEERIGATAT . « oo e PAVISINYPIQV.INQTPV qcIspRITLNA
v BAQaAA ABTENN . o oot e e e SQVEQNYPIVANLAQGEQMVIMQATSPRITLNA
mvinok T QQAA AD S . o e e e sQVSQNYPIVANLQGOQMVMloaTIsPRITLNA
Swepz [QEVAQP eaaaeall. SAVSINYPVVQNAQGQLV QPmMsPRITLNA
ClVegzUS Q. gaalEasc. SNIGSSNYPVIQNAQGAMVMoAmMS PRITLNA
svmon @ E A AAAAAPPTE « o o oot e e e e cvrpsenvypvvlltacccraaavEr |_|_I'r
svinoest ENIQ QT GGNYPLII.ENQ wvlteLs P R(TIaT

120 125 130 135 140 145 150 185 160 165 170 175 180 185

MRl

O R TR

--- | 58g --- | Aln --- |

Kl [
1

15

|

10 After the edit, you can export the aligned sequences or consensus sequence to a FASTA file or
MATLAB Workspace from the File menu.

Rearrange Rows

You can move the rows (sequences) up or down by one row. You can also move selected rows to the
top or bottom of the list.

3-50

View and Align Multiple Sequences

zl Biological Sequence Alignment - 1

File Edit Display Help

Az 2 Copy Ctrl+C
Delete Sequences
Select All Ctrl+A
d - MPNTSRPTAPPSG-GGNYPVQQ-TIGGNYVHQPLSPRTLNAWVKLVEEKKFGPEVVPMEF
Deselect All
130 135 140 145 150 155 160 165 170 175 180 185
RousRoe =y mMersTSPTA GNYPVQI.VGGNYT VPEF
HI LimelEae s drm .MPNTSRIPT A GNFPYQQ.VGGNYT VPGF
M ERowEERGHIDn .Ml sReT A GHNYPYQQ.T1GGNYV VPGF
.mpTsRIPT A CEHNYPYQQ.TGGEGNYV VPEGF
Remove Empty Columns . MPATSRPTA ENYPVOO.TAGNYV VPEF
ShemsSLazh |5 & T A 5 TA GHNYPYQQ.VGNNYV VPGF
SIVAGMETTA [N TA NYPYVH.QNNAWY VEMFE

¥ Qv . INQTPV M

HIV-1 . ¥YPIVQNLQGQMY IPMFE

HIV1-NDK e5QVSQNYPIVQNLQGQMV IPMF
SNepz VAQP.Q000QQ0.....5AavsRNYPVVQNAQGQLYV IPMF

ClVepzUiSqqqlnsc...surcssuvnvrqunchnv IPMF
i . PR Q VALF
L ¥ P L v VAMFE

Shhoast

115 120 125 130 135 140 145 150 155 160 165 170 175 180 185

-l

e —

--- | 5eq --- | Aln --- |

The selected sequence moves to the bottom of the list.

3-51

3 Sequence Analysis

[4] Biological Sequence Alignment - 1 — m} x
File Edit Display Help k]l
A AR E7EIE

-
Consensus (& TAEK - - - - - - - - - MPNTSRPTAPPSG-GGNYPVOQ-IGGNYVHOQPLSPRTLNAWVKLVEEKKFGPEVVPEMF
15 120 125 130 135 140 145 150 155 160 165 170 175 180 185
Hy2 |[TETAER. MPSTSRIPTAPSSERGGNY \"QI.\"GGNYT IPLS TLNAWVIELYEE FGAEVVPGF
HI\I'Z—MCN‘IETGT‘EI MPNTS PTAPPSGEIGGNFPYOQQ.VYGGNYTHIYPLS TLNAWY LW¥EE FGAEYVPGF
SWMM2sq ITETAET M P ET S PTAPSSGREIGGNYPYOQQ.IGGNYVW LFLS TLNAWY LIEE FGAEVVPGF
SVMMz3a [TETTET M P ET S PTAPSSGRIGGNY PVOQQ. IGGNYV LELS TLNAWYW LIEE FGAEVVPGF
Hiv-2uct [T - N D MPFATS PTAPPS . .GGNYPVOQ.ITAGNYVHEIMPLS TLNAWW L vEE FGAEVVPGF
ShesmSLEzh (S G TAER. LPAGQS PTAPPS. GGNYPYQQ.YGNNYVETPLS TLNAWY L¥EE FGAEVYVYPGF
SNAGWMNEIAA _________ .NE . TTAPPGGESINYPYVN .QNNAWVEIQPL S TLNAWVRICVEE WGAEVYVPMEF
Svmnesido IME N A A S oL ... EEEIGAT‘TPAVISINY 1qv.i1NaTPVvllacIs TLNAWVRICTEE FSPEIVPMF
HIv-1 AQOoAA ADTGHNN. SQVSONYPIVONLOQGOMVEIOATLS TLNAWVEYVIEEKAFSPEVIPMF
HIVA-NDI TQQaAA. AEgS L SEQVEQNYPIVOQNLOQGOGMVEIGQATIS TLHNAWVIEVIEERKAFSPEVIPMF
Shepz [REVAQP . L0000 gqegaoaom. SA\"SINY YYOQNAQGQLVYEGPMS TLNAWVYVEYIEEKNFNPEY IPMF
CIVCFIZLISQEE QQeQEASG SNIGSSNYPYIOQNAQGOMYEIGAMS TLNAWVEAVEEKAFNPEY IPMF
SNrncancE!l‘ AAAAAPPTG SGVMPSESGNYPYVVIRTOGGGF QEIQAVE LLITU\ll VIEE FAPEVWVALF
SWihosst |G QAT . .t EENYPLI EnaRlwviETeL S TrotTwviivEoRcwBrET vanme

-l

M

I LH-

||l
I8

i

..“J.'.

--- | 5eq --- | Aln --- |

3-52

Generate Phylogenetic Tree from Aligned Sequences

You can generate a phylogenetic tree using the aligned sequences from within the app. You can select
a subset of sequences or use all the sequences to generate a tree.

Select Display > View Tree > Selected... to generate a tree from selected sequences.

View and Align Multiple Sequences

[4] Biological Sequence Alignment - 1 — m} x
File Edit Display Help k]
A A A . Background

Zoom In =

Zoom Out nmn_q

Consens DEWEKIRLRPGGKKKYMLKHIVWAARELDRFGLNES LLETKEGCOQKILSVLAPLVYPTGS
Reset to Default Font Size
15 20 25 30 35 40 45 50 55 60 65 T0
Color Schemes

SMMM251
SNMM239
HIV-2UG1
SNsmSLaZh

SNAGMETTA

SNmnd5440
HIv-1
HIV1-NDE
Sepz
ClVepzUS
SNman

Shihoast

P o B B P o B B

s =2 w = F » > @
P o2 E <= = = = 0
[e

SNAGM3

45

50

[L B 2 N N L L 1)
(o T o T T o T o T B B]
L L L

-l

--- | 5eq --- | Aln --- |

A phylogenetic tree for the sequences is displayed in the Phylogenetic Tree app. For details on the

app, see “Using the Phylogenetic Tree App” on page 5-2.

3-53

3 Sequence Analysis

D

File Tools Window Help |
AT G EDE 2

1 HIV-2

HIVZ-MCN13

SIVMMZ51

SIVMM239

a
i

HIV-2UCH

® o { sivsmsL92h

[m]
i

SIVAGMETTA

0 0.05 0.1 0.15 0.2 0D.25 0.3

See Also
seqalignviewer | Sequence Alignment | Sequence Viewer | Genomics Viewer

More About

. “Sequence Alignments” on page 1-7
. “Aligning Pairs of Sequences” on page 3-173

3-54

Analyzing Synonymous and Nonsynonymous Substitution Rates

Analyzing Synonymous and Nonsynonymous Substitution
Rates

This example shows how the analysis of synonymous and nonsynonymous mutations at the nucleotide
level can suggest patterns of molecular adaptation in the genome of HIV-1. This example is based on
the discussion of natural selection at the molecular level presented in Chapter 6 of "Introduction to
Computational Genomics. A Case Studies Approach" [1].

Introduction

The human immunodeficiency virus 1 (HIV-1) is the more geographically widespread of the two viral
strains that cause Acquired Immunodeficiency Syndrome (AIDS) in humans. Because the virus rapidly
and constantly evolves, at the moment there is no cure nor vaccine against HIV infection. The HIV
virus presents a very high mutation rate that allows it to evade the response of our immune system as
well as the action of specific drugs. At the same time, however, the rapid evolution of HIV provides a
powerful mechanism that reveals important insights into its function and resistance to drugs. By
estimating the force of selective pressures (positive and purifying selections) across various regions
of the viral genome, we can gain a general understanding of how the virus evolves. In particular, we
can determine which genes evolve in response to the action of the targeted immune system and
which genes are conserved because they are involved in some of the virus essential functions.

Nonsynonymous mutations to a DNA sequence cause a change in the translated amino acid sequence,
whereas synonymous mutations do not. The comparison between the number of nonsynonymous
mutations (dn or Ka), and the number of synonymous mutations (ds or Ks), can suggest whether, at
the molecular level, natural selection is acting to promote the fixation of advantageous mutations
(positive selection) or to remove deleterious mutations (purifying selection). In general, when positive
selection dominates, the Ka/Ks ratio is greater than 1; in this case, diversity at the amino acid level is
favored, likely due to the fitness advantage provided by the mutations. Conversely, when negative
selection dominates, the Ka/Ks ratio is less than 1; in this case, most amino acid changes are
deleterious and, therefore, are selected against. When the positive and negative selection forces
balance each other, the Ka/Ks ratio is close to 1.

Extracting Sequence Information for Two HIV-1 Genomes

Download two genomic sequences of HIV-1 (GenBank® accession numbers AF033819 and M27323).
For each encoded gene we extract relevant information, such as nucleotide sequence, translated
sequence and gene product name.

hivl(1)
hivl(2)

getgenbank('AF033819"');
getgenbank('M27323"');

For your convenience, previously downloaded sequences are included in a MAT-file. Note that data in
public repositories is frequently curated and updated; therefore the results of this example might be
slightly different when you use up-to-date datasets.

load hivl.mat

Extract the gene sequence information using the featureparse function.

genesl
genes?

featureparse(hivl(1l), 'feature','CDS', 'Sequence', 'true');
featureparse(hivl(2), 'feature', 'CDS', 'Sequence', 'true');

3-55

3 Sequence Analysis

Calculating the Ka/Ks Ratio for HIV-1 Genes

Align the corresponding protein sequences in the two HIV-1 genomes and use the resulting alignment
as a guide to insert the appropriate gaps in the nucleotide sequences. Then calculate the Ka/Ks ratio
for each individual gene and plot the results.

KaKs = zeros(1l,numel(genesl));
for iCDS = 1l:numel(genesl)

% align aa sequences of corresponding genes
[score,alignment] = nwalign(genesl(iCDS).translation,genes2(iCDS).translation);
seql = seqinsertgaps(genesl(iCDS).Sequence,alignment(1,:));
seq2 seqginsertgaps(genes2(iCDS) .Sequence,alignment(3,:));

% Calculate synonymous and nonsynonymous substitution rates
[dn,ds] = dnds(seql,seq2);
KaKs (iCDS) = dn/ds;

end

% plot Ka/Ks ratio for each gene

bar(KaKs);

ylabel('Ka / Ks')

xlabel('genes')

ax = gca;

ax.XTickLabel = {genesl.product};

% plot dotted line at threshold 1

hold on

line([0 numel(KaKs)+1],[1 11, 'LineStyle', ':");
KaKs

KaKs =
Columns 1 through 7
0.2560 0.1359 0.3013 0.1128 1.1686 0.4179 0.5150
Columns 8 through 9

0.5115 0.3338

3-56

Analyzing Synonymous and Nonsynonymous Substitution Rates

Ka/Ks

Gag Pol Vit Wpr Tat Rev Vpu Env MNef
genes

All the considered genes, with the exception of TAT, have a total Ka/Ks less than 1. This is in
accordance with the fact that most protein-coding genes are considered to be under the effect of
purifying selection. Indeed, the majority of observed mutations are synonymous and do not affect the
integrity of the encoded proteins. As a result, the number of synonymous mutations generally exceeds
the number of nonsynonymous mutations. The case of TAT represents a well known exception; at the
amino acid level, the TAT protein is one of the least conserved among the viral proteins.

Calculating the Ka/Ks Ratio Using Sliding Windows

Oftentimes, different regions of a single gene can be exposed to different selective pressures. In these
cases, calculating Ka/Ks over the entire length of the gene does not provide a detailed picture of the
evolutionary constraints associated with the gene. For example, the total Ka/Ks associated with the
ENV gene is 0.5155. However, the ENV gene encodes for the envelope glycoprotein GP160, which in
turn is the precursor of two proteins: GP120 (residues 31-511 in AF033819) and GP41 (residues
512-856 in AF033819). GP120 is exposed on the surface of the viral envelope and performs the first
step of HIV infection; GP41 is non-covalently bonded to GP120 and is involved in the second step of
HIV infection. Thus, we can expect these two proteins to respond to different selective pressures, and
a global analysis on the entire ENV gene can obscure diversified behavior. For this reason, we
conduct a finer analysis by using sliding windows of different sizes.

Align ENV genes of the two genomes and measure the Ka/Ks ratio over sliding windows of size equal
to 5, 45, and 200 codons.

env = 8; % ORF number corresponding to gene ENV

% align the two ENV genes

3-57

3 Sequence Analysis

3-58

[score,alignment] = nwalign(genesl(env).translation,genes2(env).translation);
env_1 = seqginsertgaps(genesl(env).Sequence,alignment(1,:));
env_2 = seqginsertgaps(genes2(env).Sequence,alignment(3,:));

% compute Ka/Ks using sliding windows of different sizes

[dnl, dsl, vardnl, vardsl] = dnds(env_1, env 2, 'window',6 200);
[dn2, ds2, vardn2, vards2] dnds(env_1, env_2, 'window', 45);
[dn3, ds3, vardn3, vards3] dnds(env_1, env 2, 'window', 5);

% plot the Ka/Ks trends for the different window sizes

figure()

hold on

plot(dnl./dsl, 'r');

plot(dn2./ds2, 'b');

plot(dn3./ds3, 'g');

line([0 numel(dn3)],[1 1], 'LineStyle',"':");

legend('window size = 200', 'window size = 45', 'window size = 5'");

ylim([0 10])

ylabel('Ka / Ks')

xlabel('sliding window (starting codon)')
title 'Env';

Env
101 |

window size = 200
Br window size =45

window size =5

Ka/Ks
n

1] 100 200 300 400 500 GO0 ¥00 800 800
sliding window (starting codon)

The choice of the sliding window size can be problematic: windows that are too long (in this example,

200 codons) average across long regions of a single gene, thus hiding segments where Ka/Ks is

potentially behaving in a peculiar manner. Too short windows (in this example, 5 codons) are likely to
produce results that are very noisy and therefore not very meaningful. In the case of the ENV gene, a
sliding window of 45 codons seems to be appropriate. In the plot, although the general trend is below

Analyzing Synonymous and Nonsynonymous Substitution Rates

the threshold of 1, we observe several peaks over the threshold of 1. These regions appear to
undergo positive selection that favors amino acid diversity, as it provides some fitness advantage.

Using Sliding Window Analyses for GAG, POL and ENV Genes

You can perform similar analyses on other genes that display a global Ka/Ks ratio less than 1.
Compute the global Ka/Ks ratio for the GAG, POL and ENV genes. Then repeat the calculation using a
sliding window.

gene_index
windowSize

[1;2;8]; % ORF corresponding to the GAG, POL, ENV genes
45;

% display the global Ka/Ks for the GAG, POL and ENV genes
KaKs (gene_index)

for i = l:numel(gene_index)
ID = gene_index(1i);
[score,alignment] = nwalign(genesl(ID).translation,genes2(ID).translation);
sl seqinsertgaps(genesl(ID).Sequence,alignment(1,:));
s2 seqinsertgaps(genes2(ID).Sequence,alignment(3,:));

% plot Ka/Ks ratio obtained with the sliding window
[dn, ds, vardn, vards] = dnds(sl, s2, 'window', windowSize);
figure()
plot(dn./ds, 'b")
line([0 numel(dn)],[1 1], 'LineStyle', ':')
ylabel('Ka / Ks')
xlabel('sliding window (starting codon)"')
title(genesl(ID).product);
end

ans =

0.2560 0.1359 0.5115

3-59

3 Sequence Analysis

0.9

0.8

0.7

0.6

0.5

Ka/Ks

0.4

0.3

0.2

0.1

0 50 100 150 200 250 300 350 400 450 500
sliding window (starting codon)

3-60

Analyzing Synonymous and Nonsynonymous Substitution Rates

Ka/Ks

1.4

1.2

0.8

0.6

0.4

0.2

Pol

300 400 500 600 700 BOO 900 1000
sliding window (starting codon)

3-61

3 Sequence Analysis

3-62

25 T T T T T T T T

1571

Ka/Ks

D 1 1 1 1
0 100 200 300 400 500 GO0 FO0 800 800

sliding window (starting codon)

The GAG (Group-specific Antigen) gene provides the basic physical infrastructure of the virus. It
codes for p24 (the viral capsid), p6 and p7 (the nucleocapsid proteins), and p17 (a matrix protein).
Since this gene encodes for many fundamental proteins that are structurally important for the
survival of the virus, the number of synonymous mutations exceeds the number of nonsynonymous
mutations (i.e., Ka/Ks <1). Thus, this protein is expected to be constrained by purifying selection to
maintain viral infectivity.

The POL gene codes for viral enzymes, such as reverse transcriptase, integrase, and protease. These
enzymes are essential to the virus survival and, therefore, the selective pressure to preserve their
function and structural integrity is quite high. Consequently, this gene appears to be under purifying
selection and we observe Ka/Ks ratio values less than 1 for the majority of the gene length.

The ENV gene codes for the precursor to GP120 and GP41, proteins embedded in the viral envelope,
which enable the virus to attach to and fuse with target cells. GP120 infects any target cell by binding
to the CD4 receptor. As a consequence, GP120 has to maintain the mechanism of recognition of the
host cell and at the same time avoid the detection by the immune system. These two roles are carried
out by different parts of the protein, as shown by the trend in the Ka/Ks ratio. This viral protein is
undergoing purifying (Ka/Ks < 1) and positive selection (Ka/Ks >1) in different regions. A similar
trend is observed in GP41.

Analyzing the Ka/Ks Ratio and Epitopes in GP120

The glycoprotein GP120 binds to the CD4 receptor of any target cell, particularly the helper T-cell.
This represents the first step of HIV infection and, therefore, GP120 was among the first proteins
studied with the intent of finding a HIV vaccine. It is interesting to determine which regions of GP120

Analyzing Synonymous and Nonsynonymous Substitution Rates

appear to undergo purifying selection, as indicators of protein regions that are functionally or
structurally important for the virus survival, and could potentially represent drug targets.

From ENV genes, extract the sequences coding for GP120. Compute the Ka/Ks over sliding window of
size equal to 45 codons. Plot and overlap the trend of Ka/Ks with the location of four T cell epitopes
for GP120.

% GP120 protein boundaries in genomel and genome2 respectively
gpl20 start = [31; 30]; % protein boundaries

gpl20 stop = [511; 501];

gpl20 startnt = gpl20 start*3-2; % nt boundaries

gpl20 stopnt = gpl20 stop*3;

% align GP120 proteins and insert appropriate gaps in nt sequence
[score,alignment] = nwalign(genesl(env).translation(gpl20 start(1l):gpl20 stop(1l)),
genes2(env).translation(gpl20 start(2):gpl20 stop(2)));
seqinsertgaps(genesl(env).Sequence(gpl20 startnt(l):gpl20 stopnt(l)),alignment(1,:
seqinsertgaps(genes2(env).Sequence(gpl20 startnt(2):gpl20 stopnt(2)),alignment(3,:

gpl20 1 =
gpl20 2 =
% Compute and plot Ka/Ks ratio using the sliding window

[dn120, ds120, vardnl20, vards120] = dnds(gpl20 1, gpl20 2, 'window', windowSize);

% Epitopes for GP120 identified by cellular methods (see reference [2])

epitopes = {'TVYYGVPVWK', 'HEDIISLWQSLKPCVKLTPL', ...
"EVVIRSANFTNDAKATIIVQLNQSVEINCT', 'QIASKLREQFGNNK', ...
'QSSGGDPEIVTHSFNCGGEFF', 'KQFINMWQEVGKAMYAPP', ...
'DMRDNWRSELYKYKVVKIEPLGVAP'};

% Find location of the epitopes in the aligned sequences:
epiloc = zeros(numel(epitopes),2);
for i = 1l:numel(epitopes)
[sco,ali,ind] = swalign(alignment(1,:),epitopes{i});
epiLloc(i,:) = ind(1l) + [0 length(ali)-1];
end

figure

hold on

% plot Ka/Ks relatively to the middle codon of the sliding window
plot(windowSize/2+(1l:numel(dnl20)),dnl120./ds120)

plot(epiLoc,[1 1], 'linewidth"',5)

line([0 numel(dnl20)+windowSize/2],[1 1], 'LineStyle',"':")
title('GP120, Ka / Ks and epitopes');

ylabel('Ka / Ks');

xlabel('sliding window (middle codon)');

3-63

3 Sequence Analysis

3-64

GP120, Ka / Ks and epitopes

2671
ot
1571
2
= q “
x I 'n'lI l
.1 I e [N H ﬁ.lr.l.l.l *HI.T',;“
| l||| W |
ﬂ Il " |l I| |
M I R VA A L
05k [4 W]!kl f,_|||1l1 'L| III‘ L h 'Ill,l
IR AR A W
4 \Il ‘rl'l. AY '“'u_.'l I""LI II Ill| |II.

D i i i i i i i i i]
0 50 100 150 200 250 300 350 400 450 500

sliding window (middle codon)

Although the general trend of the Ka/Ks ratio is less than 1, there are some regions where the ratio is
greater than one, indicating that these regions are likely to be under positive selection. Interestingly,
the location of some of these regions corresponds to the presence of T cell epitopes, identified by
cellular methods. These segments display high amino acid variability because amino acid diversity in
these regions allows the virus to evade the host immune system recognition. Thus, we can conclude
that the source of variability in this regions is likely to be the host immune response.

References

[1] Cristianini, N. and Hahn, M.W,, "Introduction to Computational Genomics: A Case Studies
Approach”, Cambridge University Press, 2007.

[2] Siebert, S.A., et al., "Natural Selection on the gag, pol, and env Genes of Human
Immunodeficiency Virus 1 (HIV-1)", Molecular Biology and Evolution, 12(5):803-813, 1995.

Investigating the Bird Flu Virus

Investigating the Bird Flu Virus

This example shows how to calculate Ka/Ks ratios for eight genes in the H5N1 and H2N3 virus
genomes, and perform a phylogenetic analysis on the HA gene from H5N1 virus isolated from
chickens across Africa and Asia. For the phylogenetic analysis, you will reconstruct a neighbor-joining
tree and create a 3-D plot of sequence distances using multidimensional scaling. Finally, you will map
the geographic locations where each HA sequence was found on a regional map. Sequences used in
this example were selected from the bird flu case study on the Computational Genomics Website [1].
Note: The final section in this example requires the Mapping Toolbox™.

Introduction

There are three types of influenza virus: Type A, B and C. All influenza genomes are comprised of
eight segments or genes that code for polymerase B2 (PB2), polymerase B1 (PB1), polymerase A (PA),
hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), matrix (M1), and non-structural (NS1)
proteins. Note: Type C virus has hemagglutinin-esterase (HE), a homolog to HA.

Of the three types of influenza, Type A has the potential to be the most devastating. It affects birds
(its natural reservoir), humans and other mammals and has been the major cause of global influenza
epidemics. Type B affects only humans causing local epidemics, and Type C does not tend to cause
serious illness.

Type A influenzas are further classified into different subtypes according to variations in the amino
acid sequences of HA (H1-16) and NA (N1-9) proteins. Both proteins are located on the outside of the
virus. HA attaches the virus to the host cell then aids in the process of the virus being fused in to the
cell. NA clips the newly created virus from the host cell so it can move on to a healthy new cell.
Difference in amino acid composition within a protein and recombination of the various HA and NA
proteins contribute to Type A influenzas' ability to jump host species (i.e. bird to humans) and wide
range of severity. Many new drugs are being designed to target HA and NA proteins [2,3,4].

In 1997, H5N1 subtype of the avian influenza virus, a Type A influenza virus, made an unexpected
jump to humans in Hong Kong causing the deaths of six people. To control the rapidly spreading
disease, all poultry in Hong Kong was destroyed. Sequence analysis of the H5N1 virus is shown here
[2,4].

Calculating Ka/Ks Ratio For Each HS5N1 Gene

An investigation of the Ka/Ks ratios for each gene segment of the H5N1 virus will provide some
insight into how each is changing over time. Ka/Ks is the ratio of non-synonymous changes to
synonymous in a sequence. For a more detailed explanation of Ka/Ks ratios, see “Analyzing
Synonymous and Nonsynonymous Substitution Rates” on page 3-55. To calculate Ka/Ks, you need a
copy of the gene from two time points. You can use H5N1 virus isolated from chickens in Hong Kong
in 1997 and 2001. For comparison, you can include H2N3 virus isolated from mallard ducks in
Alberta in 1977 and 1985 [1].

For the purpose of this example, sequence data is provided in four MATLAB® structures that were
created by genbankread.

Load H5N1 and H2N3 sequence data.

load('birdflu.mat', 'chicken1997', 'chicken2001', 'mallardl1977', 'mallard1985"')

3-65

https://computationalgenomics.blogs.bristol.ac.uk/

3 Sequence Analysis

3-66

Data in public repositories is frequently curated and updated. You can retrieve the up-to-date
datasets by using the getgenbank function. Note that if data has indeed changed, the results of this
example might be slightly different when you use up-to-date datasets.

chickenl1l997 = arrayfun(@(x)getgenbank(x{:}),{chicken1997.Accession});
chicken2001 = arrayfun(@(x)getgenbank(x{:}),{chicken2001.Accession});
mallardl977 = arrayfun(@(x)getgenbank(x{:}),{mallard1977.Accession});
mallardl1985 = arrayfun(@(x)getgenbank(x{:}),{mallard1985.Accession});

You can extract just the coding portion of the nucleotide sequences using the featureparse
function. The featureparse function returns a structure with fields containing information from the
Features section in a GenBank file including with a Sequence field that contains just the coding
sequence.

for ii = 1l:numel(chicken1997)

(
ntSeq97{ii} = featureparse(chickenl1997(ii), 'feature', 'cds', 'sequence',true);
ntSeq0l{ii} = featureparse(chicken2001(ii), 'feature','cds', 'sequence',true);
ntSeq77{ii} = featureparse(mallardl977(ii), 'feature','cds', 'sequence',true);
ntSeq85{ii} = featureparse(mallardl1985(ii), 'feature','cds', 'sequence', true);
end
ntSeq97{1}

Visual inspection of the sequence structures revealed some of the genes have splice variants
represented in the GenBank files. Because this analysis is only on PB2, PB1, PA, HA, NP, NA, M1, and
NS1 genes, you need to remove any splice variants.

Remove splice variants from 1997 H5N1

ntSeq97{7} (1)
ntSeq97{8} (1)

In
—_ —
—
o o°

Remove splice variants from 1977 H2N3

ntSeq77{2}(2) = [];% PB1-F2
ntSeq77{7}(1) = [];% M2
ntSeq77{8}(1) = [];% NS2

Remove splice variants from 1985 H2N3

ntSeq85{2}(2) = [];% PB1-F2
ntSeq85{7}(1) = [1;% M2
ntSeq85{8} (1) = []1;% NS2

You need to align the nucleotide sequences to calculate the Ka/Ks ratio. Align protein sequences for
each gene (available in the 'translation' field) using nwalign function, then insert gaps into
nucleotide sequence using seqinsertgaps. Use the function dnds to calculate non-synonymous and
synonymous substitution rates for each of the eight genes in the virus genomes. If you are interested
in seeing the sequence alignments, set the 'verbose' option to true when using dnds.

Influenza gene names
proteins = {'PB2','PB1','PA",'HA','NP','NA"','M1"','NS1'};
H5N1 Virus

for ii = 1:numel(ntSeq97)
[sc,align] = nwalign(ntSeq97{ii}.translation,ntSeq01{ii}.translation, 'alpha','aa’');

Investigating the Bird Flu Virus

ch97seq = seqinsertgaps(ntSeq97{ii}.Sequence,align(1,:));
chOlseq = seqinsertgaps(ntSeq01{ii}.Sequence,align(3,:));
[dn,ds] = dnds(ch97seq,chOlseq);
H5N1. (proteins{ii}) = dn/ds;

end

H2N3 Virus

for ii = l:numel(ntSeq77)
[sc,align] = nwalign(ntSeq77{ii}.translation,ntSeq85{ii}.translation, 'alpha','aa');
ch77seq = seqinsertgaps(ntSeq77{ii}.Sequence,align(1,:));

ch85seq seqinsertgaps(ntSeq85{ii}.Sequence,align(3,:));
[dn,ds] = dnds(ch77seq,ch85seq);
H2N3. (proteins{ii}) = dn/ds;

end

H5N1

H2N3

Note: Ka/Ks ratio results may vary from those shown on [1] due to sequence splice variants.

Visualize Ka/Ks ratios in 3-D bar graph.

H5N1lrates = cellfun(@(x) (H5N1.(x)),proteins);
H2N3rates = cellfun(@(x) (H2N3. (x)),proteins);
bar3([H2N3rates' H5Nlrates']);

ax = gca;
ax.XTickLabe

1 = {'H2N3"', "H5N1'};
ax.YTickLabel p

s

)

= proteins;
zlabel('Ka/Ks"');
view(-115,16);
title('Ka/Ks Ratios for H5N1 (Chicken) and H2N3 (Mallard) Viruses');

NS1, HA and NA have larger non-synonymous to synonymous ratios compared to the other genes in
both H5N1 and H2N3. Protein sequence changes to these genes have been attributed to an increase
in H5N1 pathogenicity. In particular, changes to the HA gene may provide the virus the ability to
transfer into others species beside birds [2,3].

Performing a Phylogenetic Analysis of the HA Protein

The H5N1 virus attaches to cells in the gastrointestinal tract of birds and the respiratory tract of
humans. Changes to the HA protein, which helps bind the virus to a healthy cell and facilitates its
incorporation into the cell, are what allow the virus to affect different organs in the same and
different species. This may provide it the ability to jump from birds to humans [2,3]. You can perform
a phylogenetic analysis of the HA protein from H5N1 virus isolated from chickens at different times
(years) in different regions of Asia and Africa to investigate their relationship to each other.

Load HA amino acid sequence data from 16 regions/times from the MAT-file provided birdflu.mat
or retrieve the up-to-date sequence data from the NCBI repository using the getgenpept function.

load('birdflu.mat', 'HA")
HA = arrayfun(@(x)getgenpept(x{:}),{HA.Accession});

Create a new structure array containing fields corresponding to amino acid sequence (Sequence) and
source information (Header). You can extract source information from the HA using featureparse
then parse with regexp.

3-67

3 Sequence Analysis

3-68

for ii = 1:numel(HA)
source = featureparse(HA(ii), 'feature', 'source');
strain = regexp(source.strain, 'A/[Cclhicken/ (\w+\s*\w*).*/(\d+)", 'tokens");
proteinHA(ii).Header = sprintf('%s %s',char(strain{1}(1)),char(strain{1}(2)));
proteinHA(ii).Sequence = HA(ii).Sequence;

end

proteinHA(1)

Align the HA amino acid sequences using multialign and visualize the alignment with
seqgalignviewer.

alignHA = multialign(proteinHA);
seqgalignviewer(alignHA);

Calculate the distances between sequences using seqpdist with the Jukes-Cantor method. Use
seqneighjoin to reconstruct a phylogenetic tree using the neighbor-joining method.
Segneighjoin returns a phytree object.

distHA = seqpdist(alignHA, 'method', 'Jukes-Cantor', 'alpha', 'aa');
HA NJtree = segneighjoin(distHA, 'equivar',alignHA);

Use the view method associated with phytree objects to open the tree in the Phylogenetic Tree
Tool.

view(HA NJtree);

Visualizing Sequence Distances with Multidimensional Scaling (MDS)

Another way to visualize the relationship between sequences is to use multidimensional scaling
(MDS) with the distances calculated for the phylogenetic tree. This functionality is provided by the
cmdscale function in Statistics and Machine Learning Toolbox™.

[Y,eigvals] = cmdscale(distHA);

You can use the eigenvalues returned by cmdscale to help guide your decision of whether to use the
first two or three dimensions in your plot.

sigVecs = [1:3;eigvals(1:3)';eigvals(1:3)"'/max(abs(eigvals))];

report = ['Dimension Eigenvalues Normalized'
sprintf('\n %d\t %1.4f %1.4f',sigVecs)];
display(report);

The first two dimensions represent a large portion of the data, but the third still contains information
that might help resolve clusters in the sequence data. You can create a three dimensional scatter plot
using plot3 function.

locations = {proteinHA(:).Header};

figure

plot3(Y(:,1),Y(:,2),Y(:,3),'0ok");
text(Y(:,1)+0.002,Y(:,2),Y(:,3)+0.001,locations, 'interpreter','no');
title('MDS Plot of HA Sequences');

view(-21,12);

Clusters appear to correspond to groupings in the phylogenetic tree. Find the sequences belonging to
each cluster using the subtree method of phytree. One of subtree's required inputs is the node
number (number of leaves + number of branches), which will be the new subtree's root node. For

Investigating the Bird Flu Virus

your example, the cluster containing Hebei and Hong Kong in the MDS plot is equivalent to the
subtree whose root node is Branch 14, which is Node 30 (16 leaves + 14 branches).

clusterl = get(subtree(HA NJtree,30), 'LeafNames');
cluster2 = get(subtree(HA NJtree,21), 'LeafNames');
cluster3 = get(subtree(HA NJtree,19), 'LeafNames');

Get an index for the sequences belonging to each cluster.

[cll,cll ind]
[c12,cl12 _ind]
[c13,c13 ind]
[cl4,cl4 _ind]

intersect(locations,clusterl)
intersect(locations,cluster2)
intersect(locations,cluster3)
setdiff(locations, {cl1{:} cl2{:} c13{:}});

’
’
’

Change the color and marker symbols on the MDS plot to correspond to each cluster.

h = plot3(Y(cll ind,1),Y(cll ind,2),Y(cll ind,3),"'"", ...
Y(cl2 ind,1),Y(cl2 ind,2),Y(cl2 ind,3),'0", ..
Y(cl3 ind,1),Y(cl3 ind,2),Y(c13 ind,k3),'d", ..
Y(cl4 ind,1),Y(cl4 ind,2),Y(cl4 ind,3),'v"');

numClusters = 4;

col = autumn(numClusters);

for i = 1l:numClusters
h(i).MarkerFaceColor = col(i,:);

end

set(h(:), 'MarkerEdgeColor', 'k");
text(Y(:,1)+0.002,Y(:,2),Y(:,3),locations, 'interpreter','no');
title('MDS Plot of HA Sequences');

view(-21,12);

For more detailed information on using Ka/Ks ratios, phylogenetics and MDS for sequence analysis
see Cristianini and Hahn [5].

Displaying Geographic Regions of the H5N1 Virus on a Map of Africa and Asia
NOTE: You need Mapping Toolbox to produce the following figure.

Using tools from Mapping Toolbox, you can plot the location where each virus was isolated on a map
of Africa and Asia. To do this, you need the latitude and longitude for each location. For information
on finding geospatial data on the internet, see “Find Geospatial Data Online” (Mapping Toolbox).
Latitude and longitude for the capital city of each geographic region where the viruses were isolated
are provided for this example.

Create a geostruct structure, regionHA, that contains the geographic information for each feature,
or sequence, to be displayed. A geostruct is required to have Geometry, Lat, and Lon fields that
specify the feature type, latitude and longitude. This information is used by mapping functions in
Mapping Toolbox to display geospatial data.

[regionHA(1:16).Geometry] = deal('Point');

[regionHA(:).Lat] = deal(9.10, 34.31, 15.31, 39.00, 39.00, 39.00, 55.26,...
15.56, 34.00, 33.14, 34.20, 23.00, 37.35, 44.00,...
22.11, 22.11);

[regionHA(:).Lon] = deal(7.10, 69.08, 32.35, 116.00, 116.00, 116.00,...
65.18, 105.48, 114.00, 131.36, 131.40, 113.00,...
127.00, 127.00, 114.14, 114.14);

3-69

3 Sequence Analysis

3-70

A geostruct can also have attribute fields that contain additional information about each feature. Add
attribute fields Name and Cluster to the regionHA structure. The Cluster field contains the
sequence's cluster number, which you will use to identify the sequences' cluster membership.

[regionHA(:).Name] = deal(proteinHA.Header);

[regionHA(cll ind).Cluster] = deal(1l);
[regionHA(cl2 _ind).Cluster] = deal(2);
[regionHA(c1l3 ind).Cluster] = deal(3);
[regionHA(cl4 ind).Cluster] = deal(4);

regionHA(1)

Create a structure using the makesymbolspec function, which will contain marker and color
specifications for each marker to be displayed on the map. You will pass this structure to the
geoshow function. Symbol markers and colors are set to correspond with the clusters in MDS plot.

clusterSymbols = makesymbolspec('Point', ...

{'Cluster',1, '"Marker"', '~'},...

{'Cluster',2, '"Marker', 'o'},...

{'Cluster',3, '"Marker', 'd'},...

{'Cluster',4, 'Marker', 'v'},...

{'Cluster',[1 4], 'MarkerFaceColor',autumn(4)}, ...
{'Default', 'MarkerSize', 6},...

{'Default', 'MarkerEdgeColor', 'k'});

Load the mapping information and use the geoshow function to plot virus locations on a map.

load coast

load topo

figure

fig = gcf;

worldmap([-45 85],[0 160])

setm(gca, 'mapprojection', 'robinson', ...
'plabellocation', 30, 'mlabelparallel', -45, 'mlabellocation',30)

plotm(lat, long)

geoshow(topo, topolegend, 'DisplayType', 'texturemap')

demcmap (topo)

brighten(.60)

geoshow(regionHA, 'SymbolSpec', clusterSymbols);
title('Geographic Locations of HA Sequence in Africa and Asia')

Viewing Geographic Regions of Interest in Google™ Earth
NOTE: You need Mapping Toolbox to export data to a KML-formatted file.

Using the kmlwrite function from Mapping Toolbox, you can write the location and annotation
information for each sequence to a KML-formatted file. Google Earth displays geographic data from
KML files within its Earth browser. Mapping Toolbox's kmlwrite function translates a geostruct,
such as regionHA, into a KML-formatted file to be used by Google Earth. For more information on
kmlwrite, see “Exporting Vector Data to KML' (Mapping Toolbox).

You can further annotate each sequence with information from the Features section of the GenBank
file using the featureparse function. You can then use this information to populate the geostruct,
regionHA, and display it in table form as a description tag for each placemark in the Google Earth
browser. In a geostruct, mandatory fields are Geometry, Lat and Lon field. All other fields are
considered to be attributes of the placemark.

Investigating the Bird Flu Virus

for i = 1l:numel(HA)
feats = featureparse(HA(i), 'Feature', 'source');
regionHA(1i).Strain = feats.strain;
if isfield(feats, 'country')
regionHA(1i).Country = feats.country;
else
regionHA(1).Country

"N/A';
end
year = regexp(regionHA(i).Name, ‘\d+"', 'match');
regionHA(1i).Year = year{l};
% Create a link to GenPept record through the accession number
regionHA(1i).AccessionNumber = ...
['<a href="http://www.ncbi.nlm.nih.gov/sites/entrez?db=Protein&cmd=search&term=", ...
HA(1i).Accession, '">"',HA(i).Accession, ''];
end

[regionHA.SequencelLength] = deal(HA.LocusSequencelLength);

Create an attribute structure using the makeattribspec function, which you will use to format the
description table for each marker. The attribute structure dictates the order and formatting of each
attribute. You can also use it to not display one of the attributes in the geostruct, regionHA.

attribStruct = makeattribspec(regionHA);
Remove the Name field and reorder the fields in the attribute structure.

attribStruct = rmfield(attribStruct, 'Name');

attribStruct = orderfields(attribStruct,{'AccessionNumber', 'Strain', ...
'SequencelLength', 'Country', 'Year', 'Cluster'});

regionHA = orderfields(regionHA, {'AccessionNumber', 'Strain',...
'SequencelLength', 'Country', 'Year', 'Cluster', 'Geometry', 'Lon', 'Lat', ...
"Name'});

Reformat attribute labels for display in the table.

attribStruct.AccessionNumber.AttributelLabel = 'Accession Number";
attribStruct.Strain.AttributelLabel = 'Viral Strain"';
attribStruct.SequenceLength.AttributelLabel = 'Sequence Length";
attribStruct.Country.AttributelLabel = 'Country of Origin";
attribStruct.Year.AttributelLabel = 'Year Isolated"';
attribStruct.Cluster.AttributelLabel = 'Cluster Membership";

Viewing the File in Google Earth.

Write the regionHA geostruct to a KML-formatted file in a temporary directory.

kmlDirectory = tempdir;

filename = fullfile(kmlDirectory, 'HA geographic locations.kml');

kmlwrite(filename, regionHA, 'Description',attribStruct, 'Name', {regionHA.Strain}, ...
'Icon', 'http://maps.google.com/mapfiles/kml/shapes/arrow.png', 'iconscale',1.5);

You can display a KML file in a Google Earth browser [6]. Google Earth must be installed on the
system. On Windows® platforms, display the KML file with:

winopen(filename)

For Unix and MAC users, display the KML file with:

3-71

3 Sequence Analysis

cmd = 'googleearth ';
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])

For this example, the KML file was previously displayed using Google Earth Pro. The Google Earth
image was then saved using the Google Earth "File->Save Image" menu. This is how the data in your
KML file looks when loaded into Google Earth. To get this view move around and zoom in on the
region over Asia.

g
b _\.,_&fchi_E.lv:en."Jilin."g."zlaﬂdeSNﬂ
3

o '\\‘

g

S

: Alchicken/Korea/ES/03

L8 5. _ G di™
» § T,

¢ i ; .7’,‘

':I. 3 O e i e JEE 5 :
. wYAlchicken/Hebeil108/ Alchicken/Hebei/718/01 Eﬁ",ﬁchicken‘;,ou-ﬂ;h}zom(Hsm;
s Ry b

b i
’ i3 1
- &’ . T
] ".3‘

’ %3
l’. |".-'r'_L1- | 3
ﬂ!chickgri{GuangdonJg_.’A 78/04 ik

L j-\

2 @
% Lt

PRili pp;lne‘s'."f‘-'{?v;;l P

Paracel Islands

.-ﬁ;chiﬁ_l\(&{!\."iet Nam/LD-080/2004
Padia

ahom,

\ _f\"_.’h;"l\,flm_ghb_)NASA

'»\iiiﬁag_&@’zﬂ' “TerraMetrics
1-,';-95-20@?__Et1__rpp?-'.},echnnlogies
Gambodi©2007/ZENRIN

Investigating the Bird Flu Virus

Click a placemark to view information about the sequence. The accession number in each data table
is a hyperlink to the GenPept sequence file in the NCBI Protein Database.

= Google Earth ﬂglﬂ

File Edit View Tools Add Help

|0« | preg | § maa
Fly To |Find Businesses |Directi0n5 |

Fly to e.g.. New York, NY AIChicken/Henan/16/2004

| K=y

| Accesslon Number | AAX53508
| Viral Strain \ AlChicken/Henan/16/2004

| Sequence Length ‘ 563

o omx

| Country of Origin ‘ China

| Year Isolated | 2004
Cluster 4
& Temporary Places Membership

] HA_geographic_locations

Directions: To here - From here

—1 s
7 Layers

View: I Core j

S ; O
290000 00 C‘“-‘-’}a; o0 eee00e@ LS8

@9 ooo U7y (1] SProtein

All DA PubMed Mucleotide Protein Genome Structure PMC Taxonomy

Search | Protein = | for [AAX53508 Go| Clear |&£

] % Primary Database

|.- Limits ‘ Preview/Index] History \ Clipboard I Details |
About Entrez Digplay|8urnmary > | show|20 > ||Sort by Relevance ~ ||Sen

Entrez Protein [ﬁ": 1 | Bacteria: 0 T RefSeq: 0 T Related Structures: 1 @ 4|L|
4

HProtein Result

Optionally, remove the new KML file from your KML output directory.
delete(filename)

close all
References
[1] https://computationalgenomics.blogs.bristol.ac.uk/case studies/birdflu_demo

[2] Laver, W.G,, Bischofberger, N. and Webster, R.G., "Disarming Flu Viruses", Scientific American,
280(1):78-87, 1999.

[3] Suzuki, Y. and Masatoshi, N., "Origin and Evolution of Influenza Virus Hemagglutinin Genes",
Molecular Biology and Evolution, 19(4):501-9, 2002.

3-73

https://computationalgenomics.blogs.bristol.ac.uk/case_studies/birdflu_demo

3 Sequence Analysis

[4] Gambaryan, A., et al., "Evolution of the receptor binding phenotype of influenza A(H5) viruses",
Virology, 344(2):432-8, 2006.

[5] Cristianini, N. and Hahn, M.W,, "Introduction to Computational Genomics: A Case Studies
Approach", Cambridge University Press, 2007.

[6] Google Earth images were acquired using Google Earth Pro. For more information about Google
Earth and Google Earth Pro, visit http://earth.google.com/

3-74

http://earth.google.com/

Exploring Primer Design

Exploring Primer Design

This example shows how to use the Bioinformatics Toolbox™ to find potential primers that can be
used for automated DNA sequencing.

Introduction

Primer design for PCR can be a daunting task. A good primer should usually meet the following
criteria:

* Length is 18-30 bases.

* Melting temperature is 50-60 degrees Celsius.

* GC content is between 45% and 55%.

* Does not form stable hairpins.

* Does not self dimerize.

* Does not cross dimerize with other primers in the reaction.

* Has a GC clamp at the 3' end of the primer.

This example uses MATLAB® and Bioinformatics Toolbox to find PCR primers for the human
hexosaminidase gene.

First load the hexosaminidase nucleotide sequence from the provided MAT-file
hexosaminidase.mat. The DNA sequence that you want to find primers for is in the Sequence field
of the loaded structure.

load('hexosaminidase.mat', "humanHEXA")
sequence = humanHEXA.Sequence;

You can also use the getgenbank function to retrieve the sequence information from the NCBI data
repository and load it into MATLAB. The NCBI reference sequence for HEXA has accession number
NM 000520.

humanHEXA = getgenbank('NM _000520");

Calculating Properties of an Oligonucleotide

The oligoprop function is a useful tool to get properties of oligonucleotide DNA sequences. This
function calculates the GC content, molecular weight, melting temperature, and secondary structure
information. oligoprop returns a structure that has fields with the associated information. Use the
help command to see what other properties oligoprop returns.

nt

oligoprop('AAGCTCAAAAACGCGCGGTATTCGACTGGCGTGATCTATTTTATGCT")

nt =
struct with fields:

GC: 44.6809
GCdelta: ©
Hairpins: [3x47 char]
Dimers: [9x47 char]
MolWeight: 1.4468e+04

3-75

http://www.ncbi.nlm.nih.gov/nuccore/189181665

3 Sequence Analysis

3-76

MolWeightdelta: 0
Tm: [68.9128 79.7752 85.3393 69.6497 68.2474 75.8931]
Tmdelta: [0 0 0 0 0 0]
Thermo: [4x3 double]
Thermodelta: [4x3 double]

Finding All Potential Forward Primers

The goal is to create a list of all potential forward primers of length 20. You can do this either by
iterating over the entire sequence and taking subsequences at every possible position or by using a
matrix of indices. The following example shows how you can set a matrix of indices and then use it to
create all possible forward subsequences of length 20, in this case N-19 subsequences where N is the
length of the target hexosaminidase sequence. Then you can use the oligoprop function to get
properties for each of the potential primers in the list.

N = length(sequence) % length of the target sequence
M =20 % desired primer length

index = repmat((0:N-M)',1,M)+repmat(1:M,N-M+1,1);
fwdprimerlist = sequence(index);

for i = N-19:-1:1 % reverse order to pre-allocate structure
(1)

fwdprimerprops(i) = oligoprop(fwdprimerlist(i,:));
end

2437

20

Finding All Potential Reverse Primers

After you have all potential forward primers, you can search for reverse primers in a similar fashion.
Reverse primers are found on the complementary strand. To obtain the complementary strand use the
seqcomplement function.

comp_sequence = seqcomplement(sequence);

revprimerlist seqreverse(comp_sequence(index));
for i = N-19:-1:1 % reverse order to preallocate structure
revprimerprops(i) = oligoprop(revprimerlist(i,:));

end
Filtering Primers Based on GC Content

The GC content information for the primers is in a structure with the field GC. To eliminate all
potential primers that do not meet the criteria stated above (a GC content of 45% to 55%), you can
make a logical indexing vector that indicates which primers have GC content outside the acceptable
range. Extract the GC field from the structure and convert it to a numeric vector.

fwdgc
revgc

[fwdprimerprops.GC]';
[revprimerprops.GC]';

Exploring Primer Design

bad fwdprimers gc
bad revprimers gc

fwdgc < 45 | fwdgc > 55;
revgc < 45 | revgc > 55;

Filtering Primers Based on Their Melting Temperature

The melting temperature is significant when you are designing PCR protocols. Create another logical
indexing vector to keep track of primers with bad melting temperatures. The melting temperatures
from oligoprop are estimated in a variety of ways (basic, salt-adjusted, nearest-neighbor). The
following example uses the nearest-neighbor estimates for melting temperatures with parameters
established by SantaLucia, Jr. [1]. These are stored in the fifth element of the field Tm returned by
oligoprop. The other elements of this field represent other methods to estimate the melting
temperature. You can also use the mean function to compute an average over all the estimates.

fwdtm
revtm

cell2mat({fwdprimerprops.Tm}"');
cell2mat({revprimerprops.Tm}');
bad fwdprimers tm = fwdtm(:,5) < 50 | fwdtm(:,5) > 60;
bad revprimers tm = revtm(:,5) < 50 | revtm(:,5) > 60;

Finding Primers With Self-Dimerization and Hairpin Formation

Self-dimerization and hairpin formation can prevent the primer from binding to the target sequence.
As above, you can create logical indexing vectors to indicate whether the potential primers do or do
not form self-dimers or hairpins.

bad fwdprimers dimers = ~cellfun('isempty',{fwdprimerprops.Dimers}');
bad fwdprimers hairpin = ~cellfun('isempty',{fwdprimerprops.Hairpins}');
bad revprimers dimers = ~cellfun('isempty',{revprimerprops.Dimers}');
bad revprimers hairpin = ~cellfun('isempty',{revprimerprops.Hairpins}');

Finding Primers Without a GC Clamp

A strong base pairing at the 3' end of the primer is helpful. Find all the primers that do not end in a G
or C. Remember that all the sequences in the lists are 5'->3'".

bad fwdprimers clamp
bad revprimers clamp

lower(fwdprimerlist(:,end)) == 'a' | lower(fwdprimerlist(:,end)) == 't';
lower(revprimerlist(:,end)) == 'a' | lower(revprimerlist(:,end)) == 't';

Finding Primers With Nucleotide Repeats

Primers that have stretches of repeated nucleotides can give poor PCR results. These are sequences
with low complexity. To eliminate primers with stretches of four or more repeated bases, use the
function regexp.

fwdrepeats = regexpi(cellstr(fwdprimerlist), 'a{4,}|c{4,}|g{4,}|t{4,}"', 'ONCE");
revrepeats = regexpi(cellstr(revprimerlist), 'a{4,}|c{4,}|g{4,}|t{4,}"',"'ONCE");
bad fwdprimers repeats = ~cellfun('isempty', fwdrepeats);
bad revprimers repeats = ~cellfun('isempty', revrepeats);

Find the Primers That Satisfy All the Criteria

The rows of the original list of subsequences correspond to the base number where each
subsequence starts. You can use the logical indexing vectors collected so far and create a new list of
primers that satisfy all the criteria discussed above. The figure shows how the forward primers have
been filtered, where values equal to 1 indicates bad primers and values equal to 0 indicates good
primers.

3-77

3 Sequence Analysis

3-78

bad fwdprimers [bad fwdprimers gc, bad fwdprimers tm,...

bad fwdprimers dimers, bad fwdprimers hairpin,...
bad fwdprimers clamp, bad fwdprimers repeats];
[bad revprimers gc, bad revprimers tm,...

bad revprimers dimers, bad revprimers hairpin,...
bad revprimers clamp, bad revprimers repeats];

bad revprimers

good fwdpos = find(all(~bad fwdprimers,2));
good fwdprimers = fwdprimerlist(good fwdpos,:);
good fwdprop = fwdprimerprops(good fwdpos);

N _good fwdprimers = numel(good fwdprop)

good revpos = find(all(~bad revprimers,2));
good revprimers = revprimerlist(good revpos,:);
good revprop = revprimerprops(good revpos);

N _good revprimers = numel(good revprop)

figure

imagesc([bad fwdprimers any(bad fwdprimers,2)]);
title('Filtering candidate forward primers');
ylabel('Primer location');

xlabel('Criteria');

ax = gca;

ax.XTickLabel = char({'%GC', 'Tm"', 'Dimers', 'Hairpin','GC clamp', 'Repeats', 'AlLl'});

ax.XTickLabelRotation = 45;
colorbar

N good fwdprimers

140

N good revprimers

147

Exploring Primer Design

Filtering candidate forward primers

500

1000

Frimer location

1500

2000

.
&

@
Cle
o
N
R

Criteria
Checking For Cross Dimerization

Cross dimerization can occur between the forward and reverse primer if they have a significant
amount of complementarity. The primers will not function properly if they dimerize with each other.
To check for dimerization, align every forward primer against every reverse primer, using the
swalign function, and keep the low-scoring pairs of primers. This information can be stored in a
matrix with rows representing forward primers and columns representing reverse primers. This
exhaustive calculation can be quite time-consuming. However, there is no point in performing this
calculation on primer pairs where the reverse primer is upstream of the forward primer. Therefore,
these primer pairs can be ignored. The image in the figure shows the pairwise scores before being
thresholded, low scores (dark blue) represent primer pairs that do not dimerize.

scr mat = [-1,-1,-1,1;-1,-1,1,-1;-1,1,-1,-1;1,-1,-1,-1;1;
scr = zeros(N good fwdprimers,N good revprimers);
for 1 = 1:N _good fwdprimers
for j = 1:N good revprimers
if good fwdpos(i) < good revpos(j)
scr(i,j) = swalign(good fwdprimers(i,:), good revprimers(j,:), ...
"SCORINGMATRIX',scr mat, 'GAPOPEN',5, "ALPHA', 'NT");
else
scr(i,j) = 13; % give a high score to ignore forward primers
% that are after reverse primers
end
end
end

figure

3-79

3 Sequence Analysis

imagesc(scr)

title('Cross dimerization scores')
xlabel('Candidate reverse primers')
ylabel('Candidate forward primers')
colorbar

Cross dimerization scores

=

2

z

100

Candidate forward primers

120

140
20 40 60 80 100 120 140

Candidate reverse primers

Low scoring primer pairs are identified as logical one in an indicator matrix.
pairedprimers = scr<=3;
Visualizing Potential Pairs of Primers in the Sequence Domain

An alternative way to present this information is to look at all potential combinations of primers in the
sequence domain. Each dot in the plot represents a possible combination between the forward and
reverse primers after filtering out all those cases with potential cross dimerization.

[f,r] = find(pairedprimers);

figure

plot(good revpos(r),good fwdpos(f),'r."', 'markersize',10)
axis([1 N 1 NJ])

title('Primer selection graph')

xlabel('Reverse primer positions')

ylabel('Forward primer positions')

3-80

Exploring Primer Design

Primer selection graph

L]
2000 - L. * -
L - L]

E =8 @ a
o a4%"% 13N -
E '. l.' -
E‘]EDD- [T - -1
a as s 88 -
ﬂEJ L" e, CIr -
= ; [T .‘ I." [l
= 1000 | Se% cnbeas * P]
g d ®TiNMs *rWENT 1.2 i
& [% al Ws M " Fpe e - ® g .
L - s I L *? s F*1 . 2]
L L] - = [- iil'ﬁ L
500 [demt ooy TR ar o0 d 3]
""" L B "« 8 "1" «1 % %8 i1 .

500 1000 1500 2000

Reverse primer positions

Selecting a Primer Pair to Amplify a Specific Region

You can use the information calculated so far to find the best primer pairs that allow amplification of
the 220bp region from position 880 to 1100. First, you find all pairs that can cover the required
region, taking into account the length of the primer. Then, you calculate the Euclidean distance of the
actual positions to the desired ones, and re-order the list starting with the closest distance.

pairs = find(good fwdpos(f)<(880-M) & good revpos(r)>1100);

dist = (good fwdpos(f(pairs))-(880-M)).”2 + (good revpos(r(pairs))-(1100))."2;
[dist,h] = sort(dist);

pairs = pairs(h);

hold on

plot(good revpos(r(pairs)),good fwdpos(f(pairs)),'b."', 'markersize',10)
plot([11060 1100],[1 880-M],'qg"')

plot([11060 N],[880-M 880-M],'g")

3-81

3 Sequence Analysis

Primer selection graph

L]
2000 L. *
L - L]

E =8 @ a
5 ave 1. n -
E '. ..' -
E‘]EDD- [T - -1
a as s 88 -
ﬂEJ L" e, CIr -
= ; [T .‘ I." [l
= 1000 | Se% cnbeas * P]
g d " TINMs *rWEGT 1D i
(=] . =~ @ W T .
L wf T8 0% "iwTe su8 s
L L] - = [- -i!_ L
500 [et ooy “HEar el 3]
""" L B "« &8 ™1 «101 % %8 i1 .

500 1000 1500 2000

Reverse primer positions

Retrieve Primer Pairs

Use the sprintf function to generate a report with the ten best pairs and associated information.
These primer pairs can then be verified experimentally. These primers can also be 'BLASTed' using
the blastncbi function to check specificity.

Primers = sprintf('Fwd/Rev Primers Start End %%GC mT Length\n\n');
for 1 = 1:10

fwd = f(pairs(i));

rev = r(pairs(i));

Primers = sprintf('%s%-215%-6d%-6d%-4.409%-4.49\n%-215%-6d%-6d%-4.49%-7.49%-6d\n\n", ...
Primers, good fwdprimers(fwd,:),good fwdpos(fwd),good fwdpos(fwd)+M-1,good fwdprop(fwd).GC,g
good revprimers(rev,:),good revpos(rev)+M-1,good revpos(rev),good revprop(rev).GC,g
good revpos(rev) - good fwdpos(fwd));
end
disp(Primers)

Fwd/Rev Primers Start End E

of

GC mT Length

tacatctcgccattacctgc 732 751 50 55.61
tcaacctcatctcctccaag 1181 1162 50 54.8 430

atacatctcgccattacctg 731 750 45 52.87
tcaacctcatctcctccaag 1181 1162 50 54.8 431

tacatctcgccattacctgc 732 751 50 55.61
aaatcaacctcatctcctcc 1184 1165 45 52.9 433

3-82

Exploring Primer Design

tacatctcgccattacctgc
gaaatcaacctcatctcctc

atacatctcgccattacctg
aaatcaacctcatctcctcc

atacatctcgccattacctg
gaaatcaacctcatctcctc

ggatacatctcgccattacc
tcaacctcatctcctccaag

tacatctcgccattacctgc
gtgaaatcaacctcatctcc

tacatctcgccattacctgc
ggtgaaatcaacctcatctc

atacatctcgccattacctg
gtgaaatcaacctcatctcc

Find Restriction Enzymes That Cut Inside the Primer

732
1185

731
1184

731
1185

729
1181

732
1187

732
1188

731
1187

751
1166

750
1165

750
1166

748
1162

751
1168

751
1169

750
1168

50
45

45
45

45
45

50

50

45

50
45

45
45

55.
51.

52.
52.

52.
51.

53.
54.

55.
51.

55.
51.

52.
51.

61
08

61
63

61
63

87
63

434

434

435

433

436

437

437

Use the rebasecuts function to list all the restriction enzymes from the REBASE® database [2] that
will cut a primer. These restriction enzymes can be used in the design of cloning experiments. For
example, you can use this on the first pair of primers from the list of possible primers that you just

calculated.

fwdprimer
fwdcutter

revprimer
revcutter

fwdprimer

'tacatctcgccattacctgc'

fwdcutter =

14x1 cell array

{'AbaSI'
{'Acc36I
{'BfuAl'’
{'BmeDI"
{'BspMI'
{'Bvel'
{'FspEI"
{'LpnPI'
{'MspJI'
{'Rlal'
{'SetI'
{'SgeI"

good fwdprimers(f(pairs(1l)),:)
unique(rebasecuts(fwdprimer))

good revprimers(r(pairs(1l)),:)
unique(rebasecuts(revprimer))

}
'}

B i e e e e e e i e

3-83

3 Sequence Analysis

{'SgrTI' }
{'YkrI' }
revprimer =

'tcaacctcatctcctccaag!’

revcutter =
12x1 cell array

{'AbaSI' }
{'AspBHI'}
{'BmeDI"
{'BsaxI'
{'FspEI'
{'MnlI'
{'MspJI'
{'Rlal'
{'SetI'
{'SgeI"
{'SgrTI'
{'YkrI'

B e i e e e e e e

References

[1] Santalucia, J. Jr., "A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor
thermodynamics", PNAS, 95(4):1460-5, 1998.

[2] Roberts, R.]., et al., "REBASE--restriction enzymes and DNA methyltransferases", Nucleic Acids
Research, 33:D230-2, 2005.

3-84

Identifying Over-Represented Regulatory Motifs

Identifying Over-Represented Regulatory Motifs

This example illustrates a simple approach to searching for potential regulatory motifs in a set of co-
expressed genomic sequences by identifying significantly over-represented ungapped words of fixed
length. The discussion is based on the case study presented in Chapter 10 of "Introduction to
Computational Genomics. A Case Studies Approach" [1].

Introduction

The circadian clock is the 24 hour cycle of the physiological processes that synchronize with the
external day-night cycle. Most of the work on the circadian oscillator in plants has been carried out
using the model plant Arabidopsis thaliana. In this organism, the regulation of a series of genes that
need to be turned on or off at specific time of the day and night, is accomplished by small regulatory
sequences found upstream the genes in question. One such regulatory motif, AAAATATCT, also known
as the Evening Element (EE), has been identified in the promoter regions of circadian clock-regulated
genes that show peak expression in the evening [2].

Loading Upstream Regions of Clock-Regulated Genes

We consider three sets of clock-regulated genes, clustered according to the time of the day when they
are maximally expressed: set 1 corresponds to 1 KB-long upstream regions of genes whose
expression peak in the morning (8am-4pm); set 2 corresponds to 1 KB-long upstream regions of
genes whose expression peak in the evening (4pm-12pm); set 3 corresponds to 1 KB-long upstream
regions of genes whose expression peak in the night (12pm-8am). Because we are interested in a
regulatory motif in evening genes, set 2 represents our target set, while set 1 and set 3 are used as
background. In each set, the sequences and their respective reverse complements are concatenated
to each other, with individual sequences separated by a gap symbol (-).

load evemotifdemodata.mat;

= concatenate both strands

o —
% =

sl = [[setl.Sequence] seqrcomplement([setl.Sequence])];
s2 = [[set2.Sequence] seqrcomplement([set2.Sequence])];
s3 = [[set3.Sequence] seqrcomplement([set3.Sequence])];
% === compute length and number of sequences in each set
L1 = length(setl(1l).Sequence);

L2 = length(set2(1).Sequence);

L3 = length(set3(1).Sequence);

N1 = numel(setl) * 2;

N2 = numel(set2) * 2;

N3 = numel(set3) * 2;

% === add separator between sequences

seql seqinsertgaps(sl, 1:L1:(L1*N1)+N1, 1);

seq2 = seqinsertgaps(s2, 1:L2:(L2*N2)+N2, 1);
seq3 = seqinsertgaps(s3, 1:L3:(L3*N3)+N3, 1);

Identifying Over-Represented Words

To determine which candidate motif is over-represented in a given target set with respect to the
background set, we identify all possible W-mers (words of length W) in both sets and compute their
frequency. A word is considered over-represented if its frequency in the target set is significantly
higher than the frequency in the background set. This difference is also called "margin".

3-85

3 Sequence Analysis

type findOverrepresentedWords

function [nmersSorted, fregDiffSorted] = findOverrepresentedWords(seq, seq@, W)
% FINDOVERREPRESENTEDWORDS helper for evemotifdemo

% Copyright 2007 The MathWorks, Inc.

%=== find and count words of length W
nmers®@ = nmercount(seq®, W);
nmers = nmercount(seq, W);

%=== compute frequency of words
f = [nmers{:,2}]1/(length(seq) - W + 1);
fO = [nmers0{:,2}]/(length(seq®) - W + 1);

%=== determine words common to both set
[nmersInt, il, i2] = intersect(nmers(:,1),nmersO(:,1));
fregDiffInt = (f(il) - fO(i2))';

%=== determine words specific to one set only
[nmersX0r, i3, i4] = setxor(nmers(:,1),nmers0(:,1));
cO0 = nmers(i3,1);

d0 = nmers0(i4,1);

nmersX0r = [cO; dO];

freqDiffX0or = [f(i3) -fO(i4)]1';

%=== define all words and their difference in frequency (margin)
nmersAll [nmersInt; nmersXO0r];
fregDiff [fregDiffInt; fregDiffX0r];

%=== sort according to descending difference in frequency
[fregDiffSorted, freqDiffSortedIndex] = sort(freqDiff, 'descend');
nmersSorted = nmersAll(freqDiffSortedIndex);

The Evening Element Motif

If we consider all words of length W = 9 that appear more frequently in the target set (upstream
region of genes highly expressed in the evening) with respect to the background set (upstream region
of genes highly expressed in the morning and night), we notice that the most over-represented word
is 'AAAATATCT", also known as the Evening Element (EE) motif.

W=09;
[words, freqDiff] = findOverrepresentedWords(seq2, [seql seq3],W);
words(1:10)
freqDiff(1:10)
ans =
10x1 cell array
{'AAAATATCT '}
{'AGATATTTT'}

{'CTCTCTCTC"}
{'GAGAGAGAG '}

3-86

Identifying Over-Represented Regulatory Motifs

{ ' AGAGAGAGA ' }
{'TCTCTCTCT'}
{' AAATATCTT'}
{' AAGATATTT'}
{' AAAAATATC'}
{'GATATTTTT'}

ans =
1.0e-03 *

.1439
.1439
.1140
.1140
.1074
.1074
.0713
.0713
.0695
.0695

[ocNoNoNoNoNoNoNoNOoNO]

Filtering out Repeats

Besides the EE motif, other words of length W = 9 appear to be over-represented in the target set. In
particular, we notice the presence of repeats, i.e., words consisting of a single nucleotide or dimer
repeated for the entire word length, such as 'CTCTCTCTC'. This phenomenon is quite common in
genomic sequences and generally is associated with non-functional components. Because in this
context the repeats are unlikely to be biologically significant, we filter them out.

% === determine repeats
wordsN = numel(words);
r = zeros(wordsN,1);

for i = 1:wordsN

if (all(words{i}(1:2:end) == words{i}(1)) &&
all(words{i}(2:2:end) == words{i}(2)))

r(i) = 1;
end

end

r = logical(r);

% === filter out repeats
words = words(~r);
freqDiff = fregDiff(~r);

% === consider the top 10 motifs
motif = words(1:10)

margin = fregDiff(1:10)

EEMotif = motif{1}

EEMargin = margin(1l)

motif =

. % odd positions are the same
% even positions are the same

3-87

3 Sequence Analysis

3-88

10x1 cell array

{' AAAATATCT '}
{'AGATATTTT'}
{' AAATATCTT'}
{' AAGATATTT'}
{' AAAAATATC'}
{'GATATTTTT'}
{' AAATAAAAT '}
{'ATTTTATTT'}
{' TAAATAAAA '}
{'TTTTATTTA'}

margin =
1.0e-03 *

.1439
.1439
.0713
.0713
.0695
.0695
.0656
.0656
.0600
.0600

[ocNoNoNoNoNoNoNoNOoNO]

EEMotif =

"AAAATATCT'

EEMargin =

1.4393e-04

After removing the repeats, we observe that the EE motif ('AAAATATCT") and its reverse complement
('AGATATTTT') are at the top of the list. The other over-represented words are either simple variants
of the EE motif, such as 'AAATATCTT"', 'AAAAATATC', 'AAATATCTC', or their reverse complements,
such as 'AAGATATTT, 'GATATTTTT', 'GAGATATTT".

Assessing the Statistical Significance of Margins

Various techniques can be used to assess the statistical significance of the margin computed for the
EE motif. For example, we can repeat the analysis using some control sequences and evaluate the
resulting margins with respect to the EE margin. Genomic regions of Arabidopsis thaliana that are
further away from the transcription start site are good candidates for this purpose. Alternatively, we
could randomly split and shuffle the sequences under consideration and use these as controls.
Another simple solution is to generate random sequences according to the nucleotide composition of
the three original sets of sequences, as shown below.

% === find base composition of each set
basesl = basecount(sl);

Identifying Over-Represented Regulatory Motifs

bases2 = basecount(s2);

bases3 = basecount(s3);

% === generate random sequences according to base composition
rsl = randseq(length(sl), 'fromstructure', basesl);

rs2 = randseq(length(s2), 'fromstructure', bases2);

rs3 = randseq(length(s3), 'fromstructure', bases3);

% === add separator between sequences

rseql = seqinsertgaps(rsl, 1:L1:(L1*N1)+N1, 1);

rseq2 = seqinsertgaps(rs2, 1:L2:(L2*N2)+N2, 1);

rseq3 = seqinsertgaps(rs3, 1:L3:(L3*N3)+N3, 1);

% === compute margins for control set

[words, fregDiff] = findOverrepresentedWords(rseq2, [rseql rseq3],W);

The variable ctrlMargin holds the estimated margins of the top motifs for each of the 100 control
sequences generated as described above. The distribution of these margins can be approximated by
the extreme value distribution. We use the function gevfit from the Statistics and Machine Learning
Toolbox™ to estimate the parameters (shape, scale, and location) of the extreme value distribution
and we overlay a scaled version of its probability density function, computed using gevpdf, with the
histogram of the margins of the control sequences.

% === estimate parameters of distribution
nCtrl = length(ctrlMargin);

buckets = ceil(nCtrl/10);

parmhat = gevfit(ctrlMargin);

k = parmhat(1l); % shape parameter
sigma = parmhat(2); scale parameter

mu = parmhat(3); location parameter

[
i)
[

i)

o°

=== compute probability density function

x = linspace(min(ctrlMargin), max([ctrlMargin EEMarginl]));
y = gevpdf(x, k, sigma, mu);
% === scale probability density function

[v, ¢l = hist(ctrlMargin,buckets);
binwWidth = c(2) - c(1);
scaleFactor = nCtrl * binWidth;

% === overlay

figure()

hold on;

hist(ctrlMargin, buckets);

h = findobj(gca, 'Type', 'patch');
h.FaceColor = [.9 .9 .9];
plot(x, scaleFactor * vy, 'r');
stem(EEMargin, 1, 'b');
xlabel('Margin');

ylabel('Number of sequences');
legend('Ctrl Margins', 'EVD pdf', 'EE Margin');

3-89

3 Sequence Analysis

3-90

251
[lcl Margins
_ EVD pdf
—& EE Margin
20 — []
|
I|
0
& f |
T 1s | I
5 15 [|I
= | |
]
ks
[1 |
Lalk] |
=] - H=
2 10 E
> I
= f 1
]
i
5T | !
III
D \’ﬂ\‘ 1 1 1 ? i
2 4 6 8 10 12 14 16

Margin w1072

The control margins are the differences in frequency that we would expect to find when a word is
over-represented by chance alone. The margin relative to the EE motif is clearly significantly larger
than the control margins, and does not fit within the probability density curve of the random controls.
Because the EE margin is larger than all 100 control margins, we can conclude that the over-
representation of the EE motif in the target set is statistically significant and the p-value estimate is
less than 0.01.

Selecting Motif Length

If we repeat the search for over-represented words of length W = 6...11, we observe that all the top
motifs are either substrings (if W < 9) or superstrings (if W > 9) of the EE motif. Thus, how do we
decide what is the correct length of this motif? We can expect that the optimal length maximizes the
difference in frequency between the motif in the target set and the same motif in the background set.
However, in order to compare the margin across different lengths, the margin must be normalized to
account for the natural tendency of shorter words to occur more frequently. We perform this
normalization by dividing each margin by the margin corresponding to the most over-represented
word of identical length in a random set of sequences with a nucleotide composition similar to the
target set. For convenience, the top over-represented words for length W = 6...11 and their margins
are stored in the variables topMotif and topMargin. Similarly, the top over-represented words for
length W = 6...11 and their margins in a random set are stored in the variables rTopMotif and
rTopMargin.

% === top over-represented words, W = 6...11 in set 2 (evening)
topMotif

topMargin

Identifying Over-Represented Regulatory Motifs

% === top over-represented words, W = 6...11 in
rTopMotif

rTopMargin

% === compute score

score = topMargin ./ rTopMargin;

[bestScore, bestlLength] = max(score);

% === plot

figure()

plot(6:11, score(6:11));
xlabel('Motif length');
ylabel('Normalized margin');
title('Optimal motif length');
hold on

line([bestLength bestLength], [0 bestScore],

topMotif =
11x1 cell array

{0x0 double }
{0x0 double }
{0x0 double }
{0x0 double }
{0x0 double }
{'AATATC' }
{'AATATCT' }
{'AAATATCT" }
{'AAAATATCT" }
{'AAAAATATCT' }
{'AAAAAATATCT '}

topMargin =
1.0e-03 *

NaN
NaN
NaN
NaN
NaN
.3007
.2607
.2074
.1439
.0648
.0424

[cNoNoNoNoNG]

rTopMotif =
11x1 cell array

{0x0 double }
{0x0 double }

random set

'LineStyle', '-."')

3-91

3 Sequence Analysis

{0x0 double }
{0x0 double }
{0x0 double }
{'ATTATA' }
{'TATAATA' }
{'TTATTAAA' }
{'GTTATTAAA' }
{'ATTATATATC' }
{'ATGTTATTATT'}

rTopMargin =
1.0e-03 *

NaN
NaN
NaN
NaN
NaN
.5650
.2374
.0972
.0495
.0279
.0183

[cNoNoNoNoNG]

Optimal motif length
3 T T T T T T

2.5

Mormalized margin
-
n P

=4

0.5

'IJ i i i i i
G 6.5 7 7.5 8 8.5 9 9.5 10 w08 M

Motif length

3-92

Identifying Over-Represented Regulatory Motifs

By plotting the normalized margin versus the motif length, we find that length W = 9 is the most
informative in discriminating over-represented motifs in the target sequence (evening set) against the

background set (morning and night sets).

Determining the Evening Element Motif Presence Among Clock-Regulated Genes

Although the EE Motif has been identified and experimentally validated as a regulatory motif for
genes whose expression peaks in the evening hours, it is not shared by all evening genes, nor is it
exclusive of these genes. We count the occurrences of the EE motif in the three sequence sets and
determine what proportion of genes in each set contain the motif.

EECount = zeros(3,1);

% === determine positions where EE motif occurs
locl = strfind(seql, EEMotif);

loc2 = strfind(seq2, EEMotif);

loc3 = strfind(seq3, EEMotif);

% === count occurrences

EECount(1l) = length(locl);

EECount(2) = length(loc2);

EECount(3) = length(loc3);

% === find proportions of genes with EE Motif

NumGenes = [N1; N2; N3] / 2;
EEProp = EECount ./ NumGenes;

% === plot

figure()

bar(EEProp, 0.5);

ylabel('Proportion of genes containing EE Motif');
xlabel('Gene set');

title('Presence of EE Motif');

ylim([0 1])

ax = gca;

ax.XTickLabel = {'morning', ‘'evening', 'night'};

3-93

3 Sequence Analysis

3-94

Presence of EE Motif
1 T T T

Froportion of genes containing EE Motif

morning evening night
Gene set

It appears as though about 9% of genes in set 1, 40% of genes in set 2, and 13% of genes in set 3
have the EE motif. Thus, not all genes in set 2 have the motif, but it is clearly enriched in this group.

Analyzing the Evening Element Motif Location

Unlike many other functional motifs, the EE motif does not appear to accumulate at specific gene
locations in the set of sequences analyzed. After determining the location of each occurrence with
respect to the transcription start site (TSS), we observe a relatively uniform distribution of
occurrences across the upstream region of the genes considered, with the possible exception of the
middle region (between 400 and 500 bases upstream of the TSS).

offset = rem(loc2, 1001);

figure();

hist(offset, 100);

xlabel('0Offset in upstream region (TSS = 0)');
ylabel('Number of sequences');

Identifying Over-Represented Regulatory Motifs

Mumber of sequences
M3
P n

=&
on

0 100 200 300 400 6500 600 700 BOO 900 1000
Offset in upstream region (TSS = 0)

References

[1] Cristianini, N. and Hahn, M.W.,, "Introduction to Computational Genomics: A Case Studies
Approach", Cambridge University Press, 2007.

[2] Harmer, S.L., et al., "Orchestrated Transcription of Key Pathways in Arabidopsis by the Circadian
Clock", Science, 290(5499):2110-3, 2000.

3-95

3 Sequence Analysis

Predicting and Visualizing the Secondary Structure of RNA
Sequences

This example illustrates how to use the rnafold and rnaplot functions to predict and plot the
secondary structure of an RNA sequence.

Introduction

RNA plays an important role in the cell, both as genetic information carrier (mRNA) and as functional
element (tRNA, rRNA). Because the function of an RNA sequence is largely associated with its
structure, predicting the RNA structure from its sequence has become increasingly important.
Because base pairing and base stacking represent the majority of the free energy contribution to
folding, a good estimation of secondary structure can be very helpful not only in the interpretation of
the function and reactivity, but also in the analysis of the tertiary structure of the RNA molecule.

RNA Secondary Structure Prediction Using Nearest-Neighbor Thermodynamic Model

The secondary structure of an RNA sequence is determined by the interaction between its bases,
including hydrogen bonding and base stacking. One of the many methods for RNA secondary
structure prediction uses the nearest-neighbor model and minimizes the total free energy associated
with an RNA structure. The minimum free energy is estimated by summing individual energy
contributions from base pair stacking, hairpins, bulges, internal loops and multi-branch loops. The
energy contributions of these elements are sequence- and length-dependent and have been
experimentally determined [1]. The rnafold function uses the nearest-neighbor thermodynamic
model to predict the minimum free-energy secondary structure of an RNA sequence. More
specifically, the algorithm implemented in rnafold uses dynamic programming to compute the
energy contributions of all possible elementary substructures and then predicts the secondary
structure by considering the combination of elementary substructures whose total free energy is
minimum. In this computation, the contribution of coaxially stacked helices is not accounted for, and
the formation of pseudoknots (non-nested structural elements) is forbidden.

Secondary Structure of Transfer RNA Phenylalanine

tRNAs are small molecules (73-93 nucleotides) that during translation transfer specific amino acids to
the growing polypeptide chain at the ribosomal site. Although at least one tRNA molecule exists for
each amino acid type, both secondary and tertiary structures are well conserved among the various
tRNA types, most likely because of the necessity of maintaining reliable interaction with the
ribosome. We consider the following tRNA-Phe sequence from Saccharomyces cerevisiae and predict
the minimum free-energy secondary structure using the function rnafold.

% === Predict secondary structure in bracket notation
phe seq = 'GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA';
phe str rnafold(phe seq)

phe str =

In the bracket notation, each dot represents an unpaired base, while a pair of equally nested, opening
and closing brackets represents a base pair. Alternative representations of RNA secondary structures
can be drawn using the function rnaplot. For example, the structure predicted above can be

3-96

Predicting and Visualizing the Secondary Structure of RNA Sequences

displayed as a rooted tree, where leaf nodes correspond to unpaired residues and internal nodes
(except the root) correspond to base pairs. You can display the position and type of each residue by
clicking on the corresponding node.

% === Plot RNA secondary structure as tree
rnaplot(phe_str, 'seq', phe_seq, 'format', 'tree');
L Paired
* |npaired
B

The tRNA secondary structure is commonly represented in a diagram plot and resembles a clover
leaf. It displays four base-paired stems (or "arms") and three loops. Each of the four stems has been
extensively studied and characterized: acceptor stem (positions 1-7 and 66-72), D-stem (positions
10-13 and 22-25), anticodon stem (positions 27-31 and 39-43) and T-stem (positions 49-53 and 61-65).
We can draw the tRNA secondary structure as a two-dimensional plot where each residue is identified
by a dot and the backbone and the hydrogen bonds are represented as lines between the dots. The
stems consist of consecutive stretches of base paired residues (blue dots), while the loops are formed
by unpaired residues (red dots).

% === Plot the secondary structure using the dot diagram representation
rnaplot(phe_str, 'seq', phe seq, 'format', 'dot');

text
text
text
text

500, 200, 'T-stem');

100, 600, 'Anticodon stem');
550, 650, 'D-stem stem');
700, 400, 'Acceptor stem');

PRy

3-97

3 Sequence Analysis

3-98

®* Paired
?‘-..i ® |npaired
¥ j
»
H
't
Py Jra
- .-
-h._._'l:.._:?__._ - “'\
‘“‘rﬁ .\. 5
LN A = LD
. | %"
‘“-
e

Aty _g—a—®
Caes ‘\\\

While all the stems are important for a proper three-dimensional folding of the molecule and
successful interplay with ribosome and tRNA synthetases, the acceptor stem and the anticodon stem
are particularly interesting because they include the attachment site and the anticodon triplet. The
attachment site (positions 74-76) occurs at the 3' end of the RNA chains and consists of the sequence
C-C-A in all amino acid acceptor stems. The anticodon triplet consists of 3 bases that pair with a
complementary codon in the messenger RNA. In the case of Phe-tRNA, the anticodon sequence A-A-G
(positions 34-36) pairs with the mRNA codon U-U-C, encoding the amino acid phenylalanine. We can
redraw the structure and highlight these regions in the acceptor stem and anticodon stem by using
the selection property:

aag _pos = 34:36;
cca _pos = 74:76;
rnaplot(phe_str, 'sequence', phe seq, 'format', 'diagram',

‘selection', [aag_pos, cca pos]);

Predicting and Visualizing the Secondary Structure of RNA Sequences

2 Paired
,FG 2 Unpaired
,_{J O Selected

-"'5';ILI""EHH

:—A-L'IE:&‘Lfga—{/z
e e
J“uﬁ_‘cﬁﬁ

-}

The segregation of the sequence into four separate stems is better appreciated by displaying the
structure as graph plot. Each residue is represented on the abscissa and semi-elliptical lines connect
bases that pair with each other. The lack of pseudoknots in the secondary structure is reflected by the
absence of intersecting lines. This is expected in tRNA secondary structures and anticipated because
the dynamic programming method used does not allow pseudoknots.

rnaplot(phe_str, 'sequence', phe seq, 'format', 'graph');

3-99

3 Sequence Analysis

3-100

e

Q

e

[in]

0

E - * Paired
T * Unpaired
o

=

Q

i]

Z2r

[i]

0

J1H]

c

@m0

i

2

Q

=

£ o

E 0 10 20 30 40 50 60 70

Sequence position

Similar observations can be drawn by displaying the secondary structure as a circle, where each base
is represented by a dot on the circumference of a circle of arbitrary size, and bases that pair with
each other are connected by lines. The lines are visually clustered into four distinct groups, separated
by stretched of unpaired residues. We can hide the unpaired residues by using H.Unpaired, the
handle returned with the colorby property set to state.

[ha, H] = rnaplot(phe str, 'sequence', phe seq, 'format', 'circle',
‘colorby', 'state');

H.Unpaired.Visible = 'off';

legend off;

Predicting and Visualizing the Secondary Structure of RNA Sequences

20
15

%m

ff/// T

45

65

55 60

As you can see, the outputs of the rnaplot function include a MATLAB® structure H consisting of
handles that can be used to change the aspect properties of various residue subsets. For example, if
you set the color scheme using the colorby property set to residue, the dots are colored according
to the residue type, and you can change their property using the appropriate handle.

[ha, H] = rnaplot(phe str, 'sequence', phe seq, 'format', 'circle', 'colorby', 'residue')

ha =
Axes (Bioinfo:rnaplot:circle) with properties:
XLim: [-1 1]
YLim: [-1 1.1000]
XScale: 'linear'
YScale: 'linear'
GridLineStyle: '-'
Position: [0.1124 0.1100 0.6703 0.8150]
Units: 'normalized'

Use GET to show all properties

H:

struct with fields:

3-101

3 Sequence Analysis

[1x1
[1x1
[1x1
[1x1

Line]
Line]
Line]
Line]

ococCcon>r>

Selecte [0x1 Line]

3

45

65

- - .

55 60

H.G.Color = [0.5 0.5 0.5];
H.G.Marker = '*';
H.C
H.C

.Color = [0.5 0.5 0.5];
.Marker = '+';

3-102

[y B i o

Predicting and Visualizing the Secondary Structure of RNA Sequences

20
¥+%.,15

%D i

2
*
30 :
. 5
*
35
* 1
40
*

oo

70
45 4

E.D '* : T
& + _*_ - + !
55 60

Conservation of Transfer RNA Phenylalanine

Despite some differences in their primary sequences, tRNAs molecules present a secondary structure
pattern that is well conserved across the three phylogenetic domains. Consider the structure of the
tRNA-Phe of one representative organism for each phylogenetic domain: Saccharomyces cerevisiae
for the Eukaryotes, Haloarcula marismortui for the Archaea, and Thermus thermophilus for the
Bacteria. Then predict and plot their secondary structures using the mountain plot representation.

yeast = 'GCGGACUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAGUUCGCACCA;
halma = 'GCCGCCUUAGCUCAGACUGGGAGAGCACUCGACUGAAGAUCGAGCUGUCCCCGGUUCAAAUCCGGGAGGCGGCACCA;
theth = 'GCCGAGGUAGCUCAGUUGGUAGAGCAUGCGACUGAAAAUCGCAGUGUCGGCGGUUCGAUUCCGCCCCUCGGCACCA;
yeast str = rnafold(yeast);

theth str = rnafold(theth);

halma str = rnafold(halma);

hl = rnaplot(yeast str, 'sequence', yeast, 'format', 'mountain');

title(hl, 'tRNA-Phe Saccharomyces cerevisiae');
legend hide;

h2 = rnaplot(halma_str, 'sequence', halma, 'format', 'mountain');
title(h2, 'tRNA-Phe Haloarcula marismortui');
legend hide;

h3 = rnaplot(theth str, 'sequence', theth, 'format', 'mountain');

title(h3, 'tRNA-Phe Thermus thermophilus');
legend hide;

3-103

3 Sequence Analysis

tRNA-Phe Saccharomyces cerevisiae

Mumber of enclosing base pairs

D & i i i i i i i
0 10 20 30 40 50 60 70

Sequence position

3-104

Predicting and Visualizing the Secondary Structure of RNA Sequences

Number of enclosing base pairs

tRNA-Phe Haloarcula marismortui

20 30 40 50 60 70
Sequence position

3-105

3 Sequence Analysis

tRNA-Phe Thermus thermophilus

Mumber of enclosing base pairs

D & i i i i i i i
0 10 20 30 40 50 60 70

Sequence position

The similarity among the resulting structures is striking, the only difference being one extra residue
in the D-loop of Haloarcula marismortui, displayed in the first flat slope in the mountain plot.

The G-U Wobble Base Pair

Besides the Watson-Crick base pairs (A-U, G-C), virtually every class of functional RNA presents G-U
wobble base pairs. G-U pairs have an array of distinctive chemical, structural and conformational
properties: they have high affinity for metal ions, they are almost thermodynamically as stable as
Watson-Crick base pairs, and they present conformational flexibility to different environments. The
wobble pair at the third position of the acceptor helix of tRNA is very highly conserved in almost all
organisms. This conservation suggests that the G-U pair possesses unique features that can hardly be
duplicated by other pairs. You can observe the base pair type distribution on the secondary structure
diagram by coloring the base pairs according to their type.

rnaplot(yeast str, 'sequence', yeast, 'format', ‘'diagram', 'colorby', 'pair');

3-106

Predicting and Visualizing the Secondary Structure of RNA Sequences

AUUA

GUUG
O GCICG
]

Unpaired

References
[1] Matthews, D., Sabina,]J., Zuker, M., and Turner, D. "Expanded sequence dependence of

thermodynamic parameters improves prediction of RNA secondary structure", Journal of Molecular
Biology, 288(5):911-40, 1999.

3-107

3 Sequence Analysis

Using HMMs for Profile Analysis of a Protein Family

3-108

This example shows how HMM profiles are used to characterize protein families. Profile analysis is a
key tool in bioinformatics. The common pairwise comparison methods are usually not sensitive and
specific enough for analyzing distantly related sequences. In contrast, Hidden Markov Model (HMM)
profiles provide a better alternative to relate a query sequence to a statistical description of a family
of sequences. HMM profiles use a position-specific scoring system to capture information about the
degree of conservation at various positions in the multiple alignment of these sequences. HMM
profile analysis can be used for multiple sequence alignment, for database searching, to analyze
sequence composition and pattern segmentation, and to predict protein structure and locate genes by
predicting open reading frames.

Accessing PFAM Databases

Start this example with an already built HMM of a protein family. Retrieve the model for the well-
known 7-fold transmembrane receptor from the Sanger Institute database. The PFAM key number is
PF00002. Also retrieve the pre-aligned sequences used to train this model. More information about
the PFAM database can be found at http://pfam.xfam.org/.

hmm_7tm = gethmmprof(2);
seed seqs = gethmmalignment(2, 'type’, 'seed');

For your convenience, previously downloaded sequences are included in a MAT-file. Note that data in
public repositories is frequently curated and updated; therefore the results of this example might be
slightly different when you use up-to-date datasets.

load('gpcrfam.mat', "hmm _7tm', 'seed seqs')

Models and alignments can also be stored and parsed in later directly from the files using the
pfamhmmread, fastaread and multialignread functions.

Display the names and contents of the first three loaded sequences using the seqdisp command.

seqdisp(seed seqs([1 2 3]1),'row',70)

ans =
23x81 char array

'>VIPR2 HUMAN/123-371 '

" 1 YILVKAIYTL GYSVS.LMSL ATGSIILCLF .RKLHCTR.N YIHLNLFLSF ILRAISVLVK .DDVLYSSS.'
" 71 GTLHCPD... ootQPSSW. ..V.GCKLSL VFLQYCIMAN FFWLLVEGLY'
'141 LHTLLVA... ...MLPP.RR CFLAYLLIGW GLPTVCIGAW TAAR...... L YLED......
‘211 ... TGC. WDTN.DHSVP W....WVIRI PILISIIVNF VLFISIIRIL LQKLT..... .SPDVGGNDQ'
281 SQY....... o eKRLAKS TLLLIPLFGV HYMV..FAVF PISI...S.S'
‘351 KYQILFELCL GSF....QGL VV '
'>VIPR CARAU/100-348 '
" 1 FRSVKIGYTI GHSVS.LISL TTAIVILCMS .RKLHCTR.N YIHMHLFVSF ILKAIAVFVK .DAVLYDVIQ'
" 71 ESDNCS.... e e TASV.GCKAVI VFFQYCIMAS FFWLLVEGLY'
‘141 LHALLAVS.. ...FFSE.RK YFWWYILIGW GGPTIFIMAW SFAK...... A YFND......
211 ..., VGC. WDIIENSDLF W....WIIKT PILASILMNF ILFICIIRIL RQKIN..... .CPDIGRNES'
281 NQY....... ... eSRLAKS TLLLIPLFGI NFII..FAFI PENI...K.T'
‘351 ELRLVFDLIL GSF....QGF VV '

http://pfam.xfam.org/

Using HMMs for Profile Analysis of a Protein Family

'>VIPR1 RAT/140-386
"1 YNTVKTGYTI GYSLS.LASL LVAMAILSLF .RKLHCTR.N YIHMHLFMSF ILRATAVFIK .DMALFNSG. "

" 71 EIDHCS.... e e EASV.GCKAAV VFFQYCVMAN FFWLLVEGLY'
'141 LYTLLAVS.. ...FFSE.RK YFWGYILIGW GVPSVFITIW TVVR...... I YFED...... '
211 ..., FGC. WDTI.INSSL W....WIIKA PILLSILVNF VLFICIIRIL VQKLR..... .PPDIGKNDS'
'281 SPY....... o eSRLAKS TLLLIPLFGI HYVM..FAFF PDNF...K.A'

‘351 QVKMVFELVV GSF....QGF VV '

More information regarding how to store the profile HMM information in a MATLAB® structure is
found in the help for hmmprofstruct.

Profile HMM Alignment

To test the profile HMM alignment tool you can re-align the sequences from the multiple alignment to
the HMM model. First erase the periods in sequences used to format the downloaded aligned
sequences. Doing this removes the alignment information from the sequences.

seqs = strrep({seed _seqs.Sequence},'.',"'");
names = {seed seqs.Header};

Now align all the proteins to the HMM profile.

fprintf('Aligning sequences ')
scores = zeros(numel(seqgs),1);
aligned seqs = cell(numel(seqs),1);
for sn=1:numel(seqs)
fprintf('.")
[scores(sn),aligned seqs{sn}]=hmmprofalign(hmm_7tm,seqs{sn});
end
fprintf('\n")

Aligning SEqUENCES ... vttt i i nnnnnnnnnnnnns

Next, send the results to the Web Browser to better explore the new multiple alignment. Columns
marked with * at the bottom indicate when the model was in a "match" or "delete" state.

hmmprofmerge(aligned seqs,names,scores)

You can also explore the alignment from the command window; the hmmprofmerge function with one
output argument places the aligned sequences into a char array.

str = hmmprofmerge(aligned seqs);
str(1:10,1:80)

ans =
10x80 char array

"YILVKAIYTLGYSVS.LMSLATGSIILCLF.RKLHCTR.NYIHLNLFLSFILRAISVLVK.DDVLYSSSG-TLH. '
"FRSVKIGYTIGHSVS.LISLTTAIVILCMS.RKLHCTR.NYIHMHLFVSFILKAIAVFVK.DAVLYDVIQESDN...... '
"YNTVKTGYTIGYSLS.LASLLVAMAILSLF.RKLHCTR.NYIHMHLFMSFILRATAVFIK.DMALFNSG-EIDH. '
"FGAIKTGYTIGHSLS.LISLTAAMIILCIF.RKLHCTR.NYIHMHLFMSFIMRAIAVFIK.DIVLFESG-ESDH...... '
"YLSVKALYTVGYSTS.LVTLTTAMVILCRF.RKLHCTR.NFIHMNLFVSFMLRAISVFIK.DWILYAEQD-SSH. '
"FSTVKIIYTTGHSIS.IVALCVAIAILVAL.RRLHCPR.NYIHTQLFATFILKASAVFLK.DAAIFQGDS-TDH...... '
"LSTLKQLYTAGYATS.LISLITAVIIFTCF.RKFHCTR.NYIHINLFVSFILRATAVFIK.DAVLFSDET-QNH...... '

3 Sequence Analysis

3-110

"FDRLGMIYTVGYSVS.LASLTVAVLILAYF.RRLHCTR.NYIHMHLFLSFMLRAVSIFVK.DAVLYSGATLDEA. '
"FERLYVMYTVGYSIS.FGSLAVAILIIGYF.RRLHCTR.NYIHMHLFVSFMLRATSIFVK.DRVVHAHIGVKEL. '
"ALNLFYLTIIGHGLS.IASLLISLGIFFYF.KSLSCQR.ITLHKNLFFSFVCNSVVTIIH.LTAVANNQALVAT...... '

Looking for Similarity with Sequence Comparison

Having a profile HHM which describes this family has several advantages over plain sequence

comparison. Suppose that you have a new oligonucleotide that you want to relate to the 7-

transmembrane receptor family. For this example, get a protein sequence from NCBI and extract the
aminoacid sequence.

mousegpcr = getgenpept('NP_783573');
Bai3 = mousegpcr.Sequence;

This sequence is also provided in the MAT-file gpcrfam.mat.

load('gpcrfam.mat', 'mousegpcr')
Bai3 = mousegpcr.Sequence;

seqdisp(Bai3, 'row',70)

ans =

22x82 char array

' 1
71
' 141
' 211
' 281
' 351
' 421
' 491
' 561
' 631
' 701
' 771
' 841
' 911
' 981
'1051
'1121
'1191
'1261
'1331
'1401
'1471

MKAVRNLLIY
LKFSKKDLSC
LQKKVEEDQK
SLVLLNNVVL
DAAKFMAQTG
WSPWSLCSFT
QQRSRQCTAA
QCEGTGEEVR
QPSFARCISN
KRASYIPASD
NVVASIQKLP
DLILPTLRNY
TVLTDASHTK
SIILINFCLS
KRFLCLGWGL
DGILDKKLKH
TDKRSILFQI
DVDIACRSVL
SMNELSNPCL
GMETLPHERL
SETGSTISMS
DTFKPPSEYQ

IFSTYLLVMF
SNFSLLAYQF
SFFEFLVLNK
PLNEQTEGCL
ESGVEEWSQW
CGRGQRTRTR
AHGGSECRGP
RCSEQRCPAP
EYRHLQHSIK
GVQNFFQIVS
AASVLTDINF
TVVNSKVIVV
CLCDRLSTFA
IISSNILILV
PALVVATSVG
RAGQMSEPHS
LFAVFDSLQG
HKDIGPCRAA
KKENTELRRT
LHYKVNPEFN
SLERRKSRYS
HYTTINVLDT

GFNAAQDFWC
DHFSHEKIKD
VSPSQFGCHY
TQELQTTQVC
SACSVTCGQG
SCTPPQYGGR
WAESRECYNP
YEICPEDYLI
EHLAKGQRML
NLLDEENKEK
PMKGRKGMVD
TIRPEPKTTD
ILAQQPREIV
GQTQTHNKSI
FTRTKGYGTD
GLTLKCAKCG
FVIVMVHCIL
TITGTLSRIS
VYLCTDDNLR
MNPPVMDQFN
DLDFEKVMHT
EAKDTLELRP

STLVKGVIYG
LLRKNHSIMQ
LCTWLESCLK
NLTREAKRPP
SQVRTRTCVS
PCEGPETHHK
ECTANGQWNQ
SMVWKRTPAG
AGDGMSQVTK
WEDAQQIYPG
WARNSEDRVV
SFLEIELAHL
MESSGTPSVT
CTTTTAFLHF
HYCWLSLEGG
VVSTTALSAT
RREVQDAFRC
LNDDEEEKGT
GADMDIVHPQ
MNLDQHLAPQ
RKRHMELFQE
AEWEKCLNLP

SYSVSEMFPK
LCSSKNAFVF
SENGRTESCG
KEEFGMMGDH
PYGTHCSGPL
PCNIALCPVD
WGHWSGCSKS
DLAFNQCPLN
TLLDLTQRKN
SIELMQVIED
IPKSIFTPVS
ANGTLNPYCV
LIVGSGLSCL
FFLASFCWVL
LLYAFVGPAA
TASNAMASLW
RLRNCQDPIN
NPEGLSYSTL
ERMMESDYIV
EHMQNLPFEP
LNQKFQTLDR
LDVQEGDFQT

NFTNCTWTLE
LQYDKNFIQI
IMYTKCTCPQ
TIKSQRPRSY
RESRVCNNTA
GQWQEWSSWS
CDGGWERRMR
ATGTTSRRCS
FYAGDLLVSV
FIHIVGMGMM
SKELDESSVF
LWDDSKSNES
ALITLAVVYA
TEAWQSYMAV
AVVLVNMVIG
SSCVVLPLLA
ADSSSSFPNG
PGNVISKVII
MPRSSVSTQP
RTAVKNFMAS
FRDIPNTSSM
EV

NPDPTKYSIY'
RRVFPTDFPG'
HLGEWGIDDQ'
HEKRVPQEQA'
LCPVHGVWEE"
HCSVTCSNGT'
TCQGAAVTGQ'
LSLHGVASWE"
EILRNVTDTF'
DFQNSYLMTG'
VLGAVLYKNL"
LGTWSTQGCK"
ALWRYIRSER'
TGKIRTRLIR'
ILVFNKLVSR'
LTWMSAVLAM'
HAQIMTDFEK'
QQPTGLHMPM'
SMKEESKMNTI '
ELDDNVGLSR'
ENPAPNKNPW*

First, using local alignment compare the new sequence to one of the sequences in the multiple
alignment. For instance use the first sequence, in this case the human protein 'VIPR2'. The Smith-
Waterman algorithm (swalign) can make use of scoring matrices. Scoring matrices can capture the
probability of substitution of symbols. The sequences in this example are known to be only distantly
related, so BLOSUM30 is a good choice for the scoring matrix.

VIPR2 = seqs{1};

[sc_aa affine, alignment] =

swalign(Bai3,VIPR2, 'ScoringMatrix"', ...

Using HMMs for Profile Analysis of a Protein Family

'blosum30', 'gapopen’',5, 'extendgap', 3, 'showscore',true);

sc_aa affine
sc_aa affine =

69.6000

Scoring Space and Winning Path

&0

—
=
=

Sequence 2

—
o
=

200

200 400 600 800D 1000 1200 1400
Sequence 1

By looking at the scoring space, apparently, both sequences are related. However, this relationship
could not be inferred from a dot plot.

Bai3 aligned region = strrep(alignment(1,:),'-',"'"');

seqdotplot(VIPR2,Bai3 aligned region,7,2)
ylabel('VIPR2'); xlabel('Bai3');

3-111

3 Sequence Analysis

3-112

Bai3
50 100 150 200 250
- s n — — T LT ™ —r
S _.' - - '_ E. : :
- S - . . o : \ |
o T S STt BRI L L
-, - e = [-" _?_ - ' "o R -
-\:j . - L L Ir-. i - = - II-. . .
& LRI . L ...:n HE] T T T E
m 1 ot II.-.:I m I: '
o - . P d .
:} -.-') 5 -I) I-_I _... !-- -'I . . y ...-. I!.'.!.. '
150 . T e e
' K " - - ' ' : "
P T =2 [: - Y
G D “ L -
200 e DT e e T e s]
W ' : i o TN Fa v - St o
: o ¥
s L
w o . . -,
" Y. . ol . L. - - . I‘ o

Is either of these two examples enough evidence to affirm that these sequences are related? One way
to test this is to randomly create a fake sequence with the same distribution of amino acids and see
how it aligns to the family. Notice that the score of the local alignment between the fake sequence
and the VIPR2 protein is not significantly lower than the score of the alignment between the Bia3 and

VIPR?2 proteins. To ensure reproducibility of the results of this example, we reset the global random
generator.

rng(0, 'twister');
fakeSeq = randseq(1000, 'FROMSTRUCTURE',aacount(VIPR2));

sc_fk affine = swalign(fakeSeq,VIPR2, 'ScoringMatrix', 'blosum30"', ...
'gapopen',5, 'extendgap', 3, 'showscore',true)

sc fk affine =

60.4000

Using HMMs for Profile Analysis of a Protein Family

Scoring Space and Winning Path

\

60

Sequence 2
=]
=

-

n

o
T

20071

200 400 600 800 1000
Sequence 1

In contrast, when you align both sequences to the family using th